Market-Beta

Ivo Welch

April 2019

with Yaron Levi: "Market-Beta and Downside Risk" solo: "Model-Based Winsorizing Estimators: Simpler Estimators For Market Beta"

Notice to PhD Students

My papers are intended to teach you how to (not) commit suicide on the job market.

- The one with Yaron is not making friends.
- The solo is too simple.
- …and neither is about new data, Kenya, and/or clever quasi-experimental identification.

But I think both papers contain important and useful empirical findings, so I hope not to waste your time.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Notice to PhD Students

My papers are intended to teach you how to (not) commit suicide on the job market.

The one with Yaron is not making friends.

The solo is too simple.

…and neither is about new data, Kenya, and/or clever quasi-experimental identification.

But I think both papers contain important and useful empirical findings, so I hope not to waste your time.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Notice to PhD Students

My papers are intended to teach you how to (not) commit suicide on the job market.

- The one with Yaron is not making friends.
- The solo is too simple.
- ...and neither is about new data, Kenya, and/or clever quasi-experimental identification.

But I think both papers contain important and useful empirical findings, so I hope not to waste your time.

Motivation

Why still bother with "boring" old market-beta?

- Market-beta is interesting even w/o CAPM
 - Measure of risk contribution to diversified portfolios.
 - Hedging against bear markets
 - Down-Beta Theories (as in Ang+ or Lettau+)
 - Betting against Beta (as in Frazzini-Pedersen)
 - Pragmatic: used in regulation, etc.
- How should we estimate beta?
 - #2 offers new, easy, and superior estimator.

Down-Beta (with Yaron)

Three connected parts:

- 1. All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- 2. A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)
 - Critique = Perspective. All results are replicable.
 - Definition: Down-beta is on days when R_M < 0.</p>
- 3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

Down-Beta (with Yaron)

Three connected parts:

- 1. All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- 2. A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)

Critique = Perspective. All results are replicable.
 Definition: Down-beta is on days when R_M < 0.

3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

Down-Beta (with Yaron)

Three connected parts:

- 1. All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- 2. A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)
 - Critique = Perspective. All results are replicable.
 - Definition: Down-beta is on days when R_M < 0.</p>
- 3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

イロン イロン イヨン イヨン 二日

Part 1: Plain Beta As Hedge Metric

- Lots of detail (in the paper).
 - Daily-return "all-days" betas. OLS and/or others.
- Result: Plain=all-days beta is a good exposure measure also for down and crash markets.
- Will just show you the 3 extreme periods.
 - Betas are estimated ex-ante (all-days)
 - Market performance is realized in-time.
 - Select= Crash. Stocks. X-Axis is beta. Y-axis is returns.

1929: Oct 28, Oct 29, Nov 06

Blue = ex-ante OLS beta predicted slope Red = loess realized smoothed fit ex-ante

1987: Oct 16, Oct 19

・ロ・・聞・・思・・思・ うらぐ

2008: Oct 7, 9, 15 + Dec 1

Part 2: Down-beta in Equities

- Can we improve (down-market) hedging?
- Estimate beta only on market down-days: b_v
 - Estimate beta on market up-days \hat{b}_{V}^{+} , too.
- Is down-beta the relevant risk measure?
 Roy (1952), Markowitz (1959), etc.
- Is there a premium for down-beta bearing?
- Most Prominent: Ang-Chen-Xing (2006) pause especially at CU!

イロン イロン イロン イロン 一日

Part 2: Down-beta in Equities

- Can we improve (down-market) hedging?
- Estimate beta only on market down-days: b_v
 - Estimate beta on market up-days \hat{b}_{V}^{+} , too.
- Is down-beta the relevant risk measure?
 Roy (1952), Markowitz (1959), etc.
- Is there a premium for down-beta bearing?
- Most Prominent: Ang-Chen-Xing (2006) pause especially at CU!

ACX Innovations

- Earlier tests used monthly betas and formed pfios that destroyed variation in by.
 - E.g., they may have sorted on \hat{b}_y .
 - it is better to work with individual stocks.
 - ACX sometimes use set of low-volatility stocks.
 LV = Low-Volatility.
 - LV is ex-ante pre-identified. Good idea.

ACX Innovations

- Earlier tests used monthly betas and formed pfios that destroyed variation in by.
 - E.g., they may have sorted on \hat{b}_y .
 - it is better to work with individual stocks.
- ACX sometimes use set of low-volatility stocks.
 - LV = Low-Volatility.
 - LV is ex-ante pre-identified. Good idea.

1. Down-betas can forecast future down-betas.

2. Simultaneous Down-Beta Return Association.

- The realized down-beta correlates strongly with contemporaneous average returns.
- And this is also **not** mechanical.

3. Some Down-Beta Future Return Evidence.

- Down-betas can also predict quintile pfio returns.
- (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

- 1. Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - And this is also **not** mechanical. \checkmark
- 3. Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

- 1. Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - And this is also **not** mechanical. \checkmark
- 3. Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)

4. Some significance in GMM on 25 FF pfios.

・ロン ・回 と ・ ヨン ・ ヨ

- 1. Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - And this is also **not** mechanical. \checkmark
- 3. Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

Still Relevant?

- ACX remains highly influential.
 - >200 Web of Science, >800 Google Scholar
 - Influence is not declining.
 - ▶ Will become "home run" paper.
- We critique ACX's inference, but
 - ► All ACX results are replicable.
 - There are no mistakes.
 - Our paper "only" revisits interpretation of evidence.

Descriptive Statistics

Low-Volatility (LV) Subsample:

		Mean	Sd	#days
All-days-Beta	ĥy	0.67	0.54	253
Down-Beta	₿ _y	0.72	0.62	116
Up-Beta	\hat{b}_{y}^{+}	0.61	0.64	132
Abs(Down – Up)	$ \hat{\mathbf{b}_y} - \hat{\mathbf{b}_y} $	0.40	0.43	

Calendar Year Betas. 240k firm-years. LV 1927-2016.

- 1. Down-betas can forecast future down-betas
 - Of course, we all agree that investors care not about past but about future down-beta.
 - ► 17: down-beta can predict future down-beta:

$$\hat{b_y} \approx 0.56 \cdot \hat{b_{y-1}} + c + e, \qquad R^2 \approx 30\%$$

াবি is basically right!

 $N \approx 240$ k. i subscripts on $\hat{b_v}$ and e. Panel or FM. se is tiny. estimates.

14/78

• But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?

 All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},

...and it has more X-axis support,

...but if b_y⁻ (process) is truly different, down-beta could predict itself better,

...or not.

Empirically easy to investigate.

Not shown: our conclusions are **very** robust.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

- **•** But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?
- All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},
 - …and it has more X-axis support,
- ...but if b_y (process) is truly different, down-beta could predict itself better,

...or not.

- Empirically easy to investigate.
 - Not shown: our conclusions are **very** robust.

イロト イヨト イヨト イヨト 三日

- **•** But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?
- All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,

...or not.

Empirically easy to investigate.

Not shown: our conclusions are **very** robust.

イロト イヨト イヨト イヨト 三日

- **•** But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?
- All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,

...or not.

Empirically easy to investigate.

- **•** But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?
- All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,
 - ...or not.
 - Empirically easy to investigate.

Not shown: our conclusions are **very** robust.

- **•** But if you care about $\hat{\mathbf{b}_{v}}$, can you do better?
- All-days beta b_{y-1} always has about twice as many days for estimation as down-beta b_{y-1},
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,
- ...or not.

Empirically easy to investigate.

Not shown: our conclusions are **very** robust.

イロン イロン イヨン イヨン 二日

ACX: Predict $\hat{\mathbf{b}_{\mathbf{v}}}$ with lagged down-beta:

$$\hat{\mathbf{b_y}} \approx \mathbf{0.56} \cdot \hat{\mathbf{b_{y-1}}} + c + e, \qquad \mathbf{R}^2 \approx 30\%$$

LW: Predict by with lagged all-days betas:

$$\hat{b}_{y}^{-} \approx 0.72 \cdot \hat{b}_{y-1} + c + e \qquad R^{2} \approx 40\%$$

$$\hat{b}_{y}^{-} \approx 0.74 \cdot \hat{b}_{y-1}$$

$$-0.07 \cdot \hat{b}_{y-1}^{+} + 0.05 \cdot \hat{b}_{y-1}^{-} + c + e \qquad R^{2} \approx 40\%$$

N \approx 240k. i subscripts on $\hat{b_y}$ and e. Panel or FM. se is tiny.

ACX: Predict $\hat{\mathbf{b}_{\mathbf{v}}}$ with lagged down-beta:

$$\hat{\mathbf{b_y}} \approx \mathbf{0.56} \cdot \hat{\mathbf{b_{y-1}}} + c + e, \qquad \mathbf{R}^2 \approx 30\%$$

LW: Predict $\hat{\mathbf{b}_y}$ with lagged all-days betas:

$$\hat{b}_{y}^{-} \approx 0.72 \cdot \hat{b}_{y-1} + c + e \qquad R^{2} \approx 40\%$$

$$\hat{b}_{y}^{-} \approx 0.74 \cdot \hat{b}_{y-1}$$

$$-0.07 \cdot \hat{b}_{y-1}^{+} + 0.05 \cdot \hat{b}_{y-1}^{-} + c + e \qquad R^{2} \approx 40\%$$

 $N \approx 240k$. i subscripts on $\hat{b_y}$ and e. Panel or FM. se is tiny.

A D > A B > A B >

If you care about the future down-beta, then forecast it with all-days beta, not with itself.

• Or shrink \hat{b}_{y-1} away to almost nada.

...because

$(\Delta_{y} \equiv) \hat{\mathbf{b}}_{y}^{-} - \hat{\mathbf{b}}_{y}^{+} \approx c + 0.087 \cdot (\hat{\mathbf{b}}_{y-1}^{-} - \hat{\mathbf{b}}_{y-1}^{+})$

Most $\Delta_{\rm y}$ is just estimation noise.

(PS: It is this noisy realized betas that is also the one used in ACX part 1. It must have huge EIV. (Not shown:) some is even harder-to-estimate time-variation in Δ .)

If you care about the future down-beta, then forecast it with all-days beta, not with itself.

• Or shrink \hat{b}_{y-1} away to almost nada.

…because

$$(\Delta_{\mathbf{y}} \equiv) \hat{\mathbf{b}}_{\mathbf{y}}^{-} - \hat{\mathbf{b}}_{\mathbf{y}}^{+} \approx c + 0.087 \cdot (\hat{\mathbf{b}}_{\mathbf{y}-1}^{-} - \hat{\mathbf{b}}_{\mathbf{y}-1}^{+})$$

Most Δ_{y} is just estimation noise.

(PS: It is this noisy realized betas that is also the one used in ACX part 1. It must have huge EIV. (Not shown:) some is even harder-to-estimate time-variation in Δ .)

Above was down-beta prediction.

Below is stock-return explanation/prediction.

2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!

But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.

At least, use many years [-4 to +4 = no results].

2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!
- But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.
 - At least, use many years [-4 to +4 = no results].
2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!
- But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.
 - ► At least, use many years [-4 to +4 = no results].

¥ 2	T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{b}_{yi} + \gamma_2 \cdot \hat{b}_{yi}^{\dagger} +$						
	Dete	ACX RFS	Replic				
	Beta	Simult	ans by				
	b	0.062	0.088				
	(T)	(+6.0)	(+6.1)				
	ê +	0.020	0.002				
	(T)	+2.3	+0.2				
	Sample	ACX	ACX				
		1963	3-2001				

(Strong positive for $\hat{\mathbf{b}}$ only if betas are estimated simultaneous (or one future year). $\hat{\mathbf{b}}$ is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

¥ 2	T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{b}_{yi} + \gamma_2 \cdot \hat{b}_{yi}^{\dagger} +$								
	Beta	Ex-Ante \hat{b}_{y-1}							
	6 (T)	0.062 (+6.0)	0.088 (+6.1)	-0.009 (-1.6)					
	b ⁺ (T)	0.020 +2.3	0.002 +0.2	0.005 (0.8)					
	Sample	ACX 1963	ACX 3-2001	ACX 1963-01					

(Strong positive for $\hat{\mathbf{b}}$ only if betas are estimated simultaneous (or one future year). $\hat{\mathbf{b}}$ is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{b}_{yi} + \gamma_2 \cdot \hat{b}_{yi}^{\dagger} + ...$

	ACX RFS	Replic		
Beta	Simult	ans \hat{b}_y	Ex-An	te ĥ _{y–1}
b	0.062	0.088	-0.009	-0.022
(T)	(+6.0)	(+6.1)	(–1.6)	(–3.5)
Ê⁺	0.020	0.002	-0.005	-0.020
(T)	+2.3	+0.2	(-0.8)	(-3.6)
Sample	ACX	ACX	ACX	Extd
	1963	3-2001	1963-01	1927-16

(Strong positive for $\hat{\mathbf{b}}$ only if betas are estimated simultaneous (or one future year). $\hat{\mathbf{b}}$ is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

Fama-Macbeth Gammas on

- ► 63-01: Realized down-betas $\hat{b}_{V}^{-} \xrightarrow{+}$ returns. (0.08)
- ► 63-01: "Placebo" Ex-post (plain) betas $\hat{b}_y \xrightarrow{+}$ returns. (0.18)
- ► 63-01: Ex-post competing effect: $\hat{b}_y = 0.21^{***}_{**} \hat{b}_y = 0.03^{**}_{*} \hat{b}_{y^{\approx}-0.04}$
- ▶ 63-01: **Ex-ante** any betas: $\xrightarrow{-}$ returns.
- ▶ 63-01: Windowed 4yr betas: $\xrightarrow{-}$ returns.
- ▶ **1963-2016**: ≈ 63-01.

Defend Ex-Post Realized Beta?

- Fama: all AP tests are eqbm model and Ω.
 - Judgment call: ex-post info seems better in IV regressions, agent-specific consumption, etc.
- Ex-post info could resolve many pricing mysteries.
- Most important, FM all-days beta \rightarrow stock returns:
 - with <u>FM Gamma</u> (T-stat) ... Ex-Ante Betas <u>-0.3%/year</u> (-0.22) ... Contemp Betas <u>+8.4%/year</u> (+3.84)

and 8.4% is even underestimated due to EIV. See original FM multi-sort, etc.

Above was ACX ex-post down-beta evidence (ব2-ব্যা5).

Below is ACX ex-ante down-beta evidence (18410).

... and GMM (16)

25/78

3. Down-Beta Future Return Evidence

ACX Specification:

- Quintile test pfios based on down-betas.
 - Short: Downbeta \approx 0.2.
 - Long: Downbeta \approx 1.9.
- Zero-Investment Portfolio Tests
 - ▶ Jensen-Black-Scholes (1972), Fama-French (1993).
- non-LV and LV sets.

イロト イポト イヨト イヨト 二日

ACX Tables 8-10

Lagged beta predicts future monthly stock returns:

(not reported) $\hat{b_{y-1}}$	0.19	1.89	
(not reported) $\hat{b_y}$	0.60	1.38	
Quintile:	Low \hat{b}_{y-1}	High <mark>b</mark> 1	∆T-stat
T8: Net of Risk-free	+0.6%	+0.7%	(0.6)
T9: LV Net of Rf	+0.6%	+0.9%	(2.3)
T10: LV Size/B-M Adj	-0.3%	+0.2%	(3.3)

(LV= Low VItlty. EW Quintiles. Excess= TB. 1963-2001)

イロト イボト イヨト イヨト 二日

Our Near Replication

b_{y-1}-Spread Zero Pfio. Time-Series Regs. %/mo.

	∛ 8	∛19	≣10
ACX Alpha	0.11	0.23	0.44
(ACX T-stat)	(0.60)	(2.31)	(3.36)
			SMB
			HML
Sample:	All	LV	LV
Replication (T-stat)	0.11 (0.60)	0.30 (1.85)	0.50 (3.37)

(Small differences in LV classification and SMB/HML adjustments.)

Placebo—Plain "All-Days" Beta b-v-Spread Zero Pfio. Time-Series Regs. %/mo.

Similar to:	₹8	∛19	শ্ব10
ACX Alpha (ACX T-stat)		n/a . n/a .	
			SMB HML
Sample		LV	LV
LW Alpha (T-stat)	0.03 (0.15)	0.20 (1.08)	0.45 (2.63)

Placebo is a little worse, but really quite similar!

So, what, if anything, is wrong here?

Average XMKT/mo in ACX sample: 0.54%/mo:

$\Rightarrow \hat{b}_y \cdot XMKT \approx 0.77 \cdot 0.54\% \approx 0.42\%/mo$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

So, what, if anything, is wrong here?

Average XMKT/mo in ACX sample: 0.54%/mo:

 $\Rightarrow \hat{b}_{y} \cdot XMKT \approx 0.77 \cdot 0.54\% \approx 0.42\%/mo$

Time-Series (FF) Regs, b_{y-1}-Sort

	∛8	∛19	গ্ব10	N/A
ACX Alpha	0.11	0.23	0.44	n/a
(T-stat)	(0.60)	(2.31)	(3.36)	n/a
				XMKT
			SMB	SMB
			HML	HML
Sample		LV	LV	LV
LW Alpha	0.11	0.30	0.50	0.04
Tatat	(0, 0, 0)	(1 OE)	(2 22)	(0.21)

◆□ > ◆母 > ◆臣 > ◆臣 > 「臣 - のへぐ」

Is Exposure Alpha?

- Go long stocks with high X exposure Go short stocks with low X exposure
 - X can be a zero-investment currency pfio, or commodity pfio, or whatever.
- Look at a sample period in which $\bar{X} \gg 0$.
- \Rightarrow Portfolio should have pos avg rates of return.
- Average statement (not tautology).
- ACX looked at high-(down-)beta portfolios in a time of good stock-market performance.

Does FM Slope Imply FF Alpha?

- The 1-Factor CAPM model gives a prescription for how much pfio should have gone up.
 - FM Slope=Necessary, but not sufficient for FF Alpha.
- In ACX, high-(down) beta pfios had higher rates of return only w/o XMKT control.
- High-beta stocks \uparrow more when/because market \uparrow .
- ...as they should have, given that they had positive exposures and the market went up,
- ...but high (down-)beta stocks did not even go up enough to "break even" in a "positive alpha" way.

What About Ex-Post Downbeta?

(ACX Fama-Macbeth Focus. Needed for Strong Positive.)

We already know:

- Down-betas \approx Plain all-days betas.
- From 1963-01, $\hat{b}_y \xrightarrow{+} r$ was good.
- Marginal FM $\hat{b_v} \rightarrow r$ was small 0.03.
- Downbeta should be a little more positive in FF regs.
- So, was the marginal realized simultaneous (ex-post) by predicted return even strong enough just to meet the 1-factor benchmark?

イロン イロン イロン イロン 一日

What About **Ex-Post** Downbeta?

	∛8	∛19	গ্∎10	N/A
ACX Alpha		r	n/a	
(T-stat)		r	ı∕a	
				ХМКТ
			SMB	SMB
			HML	HML
Sample		LV	LV	LV
LW Alpha	0.14	0.25	0.45	-0.89
T-stat	(0.63)	(1.33)	(2.67)	(-0.78)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

FM Reassessment

- Yes, there was a positive FM association between ex-post down-betas and rates of return;
- ...but it was not enough merely to beat the 1-factor target benchmark.

But it's 2016 now. What is the best inference today?

FM Reassessment

- Yes, there was a positive FM association between ex-post down-betas and rates of return;
- ...but it was not enough merely to beat the 1-factor target benchmark.

But it's 2016 now. What is the best inference today?

Spec	∛∎8	₹9	बारी विश्व	N/A
ACX Alpha (T-stat)				
				ХМКТ
			SMB	SMB
			HML	HML
Sample		LV	LV	LV
LW Alpha	-0.28	-0.02	-0.02	-0.44
I-stat (-1.32)	(-0.11)	(-0.12)	(–4.27)

Time-Series (FF) Regs, \hat{b}_{y-1}

From 1963–2016:

- Higher b_{y-1} stocks did not even have higher average rates of return;
- ...but XMKT continued to be very positive;
- ...thus 1-F alpha of b_{y-1} was not just not positive, it was negative;
- ► ...just as it is for \hat{b}_{y-1} in Frazzini-Pedersen.

Did Down-Beta b Give Pos Alpha?

Relative to what?

- Risk-Neutral Model?
 A: Yes, as of 2001.
 A: No, as of 2016.
- ► CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- (Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

・ロト ・回ト ・ヨト ・ヨト

Did Down-Beta b Give Pos Alpha?

Relative to what?

- Risk-Neutral Model?
 A: Yes, as of 2001.
 A: No, as of 2016.
- ► CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- (Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

・ロト ・回ト ・ヨト ・ヨト

Did Down-Beta b Give Pos Alpha?

Relative to what?

- Risk-Neutral Model?
 A: Yes, as of 2001.
 A: No, as of 2016.
- CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- (Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

Important Warning

- ► To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

- ...unless you want to learn whether b_y has a less negative relation with future stock returns than b_y!
- ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
- ...which is sort of the case in the ACX GMM spec, too.

Important Warning

- ► To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

- ...unless you want to learn whether by has a less negative relation with future stock returns than by!
 - ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
 - ...which is sort of the case in the ACX GMM spec, too.

Important Warning

- To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

- ...unless you want to learn whether by has a less negative relation with future stock returns than by!
- ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
- ...which is sort of the case in the ACX GMM spec, too.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

4. GMM on 25 FF pfios (T6)

- GMM is not a great expertise of our's.
- Down-beta helps explain 25 FF portfolio returns.
 remarkable, given motivation about pfio info destruction.
- ▶ ...but with the wrong sign ?!? b_m is coef on r_m.
 a b_m b_m 6 Spec II 1.35 -17.73 22.84
 - ...and see warning on prev page.

4. GMM on 25 FF pfios (T6)

- GMM is not a great expertise of our's.
- Down-beta helps explain 25 FF portfolio returns.
 remarkable, given motivation about pfio info destruction.
- ...but with the wrong sign ?!? b_m is coef on r_m.

	а	bm	b _m −
∛6 Spec II	1.35	-17.73	22.84
$E(I(x)\cdotr)=0$	[8.70]	[3.03]	[2.16]

…and see warning on prev page.

We need to learn about down-beta, not win an argument.

We need to learn what we have missed.

We could not get a hold of ACX, so apologies for not considering and investigating more counterarguments.

Hopefully, we will soon improve paper with Andrew's comments. We want to end up with a better synthesis than his thesis and our antithesis.

...and of course, the **Critical Finance Review** is very interested in this kind of exchange between critique and authors.

We need to learn about down-beta, not win an argument.

We need to learn what we have missed.

We could not get a hold of ACX, so apologies for not considering and investigating more counterarguments.

Hopefully, we will soon improve paper with Andrew's comments. We want to end up with a better synthesis than his thesis and our antithesis.

...and of course, the **Critical Finance Review** is very interested in this kind of exchange between critique and authors.

・ロン ・四 と ・ 回 と ・ 回 ・

Part 3: Down-Beta in Asset Classes

- Lettau-Maggiori-Weber (2014).
- ► Uses full-sample betas, not realized betas.
- Like every paper, makes some choices. All ok.
- Common misconception, already nicely noted in LMW: Currencies are mostly just completely unrelated investments...like cash.

Ex-Ante vs Full-Window Betas

- Full-Window betas may be better than ex-ante,
- ...esp because we have low power on down-market classification.
- Ex-Ante Down-Beta Inference in FM:
 - some results become weaker (a few become stronger).
 - LMW's results do not generally reverse, unlike ACX's.
 - (sovereign bonds may become more interesting with more data.)

・ロット 小田 マイロマ

Ex-Ante vs Full-Window Betas

- Full-Window betas may be better than ex-ante,
- ...esp because we have low power on down-market classification.
- **Ex-Ante** Down-Beta Inference in FM:
 - some results become weaker (a few become stronger).
 - LMW's results do not generally reverse, unlike ACX's.

(sovereign bonds may become more interesting with more data.)

Can CAPM or FFM explain Alphas? Is Downbeta helpful?

(ロ) (回) (E) (E) (E)
\rightarrow α_{OF}

Positive between downbeta and risk-free adj returns.

ĥ $\rightarrow \alpha_{0F}$

Positive between plain beta and risk-free adj returns.

 $\hat{b} - \hat{b} \rightarrow \alpha_{0F}$

Positive between delta beta and risk-free adj returns.

 $\rightarrow \alpha_{3F}$

No association between down-beta and **FFM**-adj.

ĥ $\rightarrow \alpha_{3F}$

No association between **plain** beta and FFM-adj.

 $\hat{b} - \hat{b} \rightarrow \alpha_{0F}$

No association between **beta-diff** and FFM-adj.

Summary on Beta Prediction

- Plain all-days daily-return betas work great for down-markets, too.
- Est'd ex-ante down-betas are useless:
 - Even if you care only about down-beta
 - > You are still better off using all-days daily returns.

イロト イポト イヨト イヨト

Summary on Return Prediction

Despite positive **Fama-Macbeth** coefficients for **ex-post** down-betas associating with stock returns:

- For many investment strategies, differences between FM and FF tests are modest
 - but not in near-beta-related strategies,
 - ▶ where strategy has to beat market premium ER_m−r_f.
- Down-beta-sorted pfios, ex-ante or ex-post, have zero or negative CAPM/FFM alphas.
 - **b** $\hat{\mathbf{b}}_{\mathbf{y}}$ are primarily just (noisier) proxies for $\hat{\mathbf{b}}_{\mathbf{y}}$.
 - $\mathbf{\hat{b}_v}$ do not help resolve asset-pricing puzzles.
 - Returns were not unusual on down-beta dimension.

A Better Market-Beta Estimator

(brand-new, 1 week old.)

(日)

performance metric

I will predict

- future ols(/other) market-beta estimates
- never future average returns.

best beta estimator known to-date

- daily stock returns
- about 1-3 years of data.
- vasicek and its derivatives
 - (random-effects and/or bayesian justification if no drift.)
 - Levi-Welch linear de-bias.

more alternatives below.

・ 同 ト ・ ヨ ト ・ ヨ ト

vasicek disadvantages

- optimal design was never suited to problem:
 - designed for measurement error,
 - not for underlying beta drift
 - (ergo 12–24 months windows)
- good R², but badly biased
 - levi-welch (2017) suggests empirical de-biasing
 - requires another stage
- spooky entangled estimates
- requires multi-step ts and xs procedure

I will show you a better and simpler estimator

vasicek disadvantages

- optimal design was never suited to problem:
 - designed for measurement error,
 - not for underlying beta drift
 - (ergo 12–24 months windows)
- ▶ good R², but badly biased
 - levi-welch (2017) suggests empirical de-biasing
 - requires another stage
- spooky entangled estimates
- requires multi-step ts and xs procedure
- I will show you a better and simpler estimator

Market Return

Market Return

62/78

63/78

64/78

beta slope winsorized (bsw)

- 1. 12–24 mos of daily stock returns
- 2. winsorize all returns ($\Delta_s = 2$):

$$\mathsf{rsw}_{i,t} \in \ 1.0 + \ \left[-\Delta_s, \Delta_s \right] \cdot \mathsf{r}_{m,t}$$
 .

3. estimate ols market-model

$$rsw_{i,t} = a_i + bsw_i \cdot r_{m,t}$$

(just a reuse of the model with a reasonable prior. note: model-specific.)

why $\Delta_{\rm S} = 2?$

- fewer than 1% of betas exceed –1 and +3
- fewer than 0.03% repeat in consecutive years
- beyond, no monotonicity between b_t and E(b_{t+1})
- not philosophical, but also not highly searched:
 - you could also use [-0.5, 2.5] or [-3, 5].
 - lower Δ_s forces too much towards 1.
 - higher Δ_s forces nada.

does it matter?

are betas even different?

 $\label{eq:rmsd} \begin{array}{l} \mbox{rmsd} \ (\ \mbox{bols}_D \ , \ \mbox{bsw} \) \approx 0.37 \\ \\ \mbox{rmsd} \ (\ \mbox{bvck}_D \ , \ \mbox{bsw} \) \approx 0.20 \\ \\ \\ \mbox{rmsd} \ (\ \mbox{bols}_M \ , \ \mbox{bsw} \) \approx 0.60 \end{array}$

"gamma" panel reg for bols_{t+1}

	γ̈́o	$se(\gamma_0)$	γ1	$se(\gamma_1)$	R ²
(bols)	0.34	.004	0.54	.005	25.5%
(bvck)	0.19	.002	0.74	.002	30.8%
(blw)	-0.01	.003	0.98	.003	same
level (blw)	0.27	.002	0.70	.003	29.7%
band (bbw)	0.04	.002	0.93	.003	30.9%
slope (bsw)	0.01	.002	0.96	.003	31.4%
slope + v	-0.01	.003	1.00	.003	31.5%

イロト イヨト イヨト イヨト 一日

Winsorization Parameter Δ

・ロ・・母・・ヨ・・ヨ・ のへぐ

nothing edgy

- very stable by year.
- very stable by ols beta.
- no meaningful improvement by varying Δ_s .
 - even by own lagged beta, beta-sd, marketcap, trading volume, volatility, etc.
 - first-stage firm-specific estimated deltas don't help much. will show you best.

rmse by market cap percentile

Δ^* by market cap percentile

possible improvements: obtain mcap rank, then

More winsorization (∆s = 1.5) for small-caps (rank < 40%),</p>

► less winsorization (∆_s = 3) for big-caps (rank > 80%).

another 2% R² improvement

steep exponential decline ($\approx exp[-2\Delta d/252]$)

 Now
 3 mo
 6mo
 1 yr
 2 yr

 WLS weights
 1.0
 80%
 50%
 10%
 2%

- ► WLS allowed for kink.
- no loss of observations.
- trivially easy in time.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

another 1% R² improvement

- add one extra variable reflecting firm-size or dollar trading volume.
 - big firms have bigger market-betas (yes!),
 - but use requires first-stage regression,
 - and marketcap requires merging, data loss, etc.
- I could find no other useful accounting compustat or crsp derived variable or ratio.

monthly-overlaps + dimson + fp

	R ² with x being only							
$y\downarrow$	self	bsw	vck	dim	fp			
ols	38%	44%	43%	28%	27%			
vck	50%	51%						
bsw								
dim	22%	30%	better use bsw if interested in dim					
fp	21%	30%						

 \rightarrow what should you use if you care (but why?) about future dimson or fp estimates?

(日)

monthly-frequency return data?

- even long-window monthly betas are miserable predictors of anything (like R² of < 15%, not 40%).
- daily predicts monthly better than monthly itself.
- \blacktriangleright \rightarrow use daily even if interested in monthly.

conclusion

- novel slope winsorization method afaik.
- novel application of winsorization method in important context of market-beta estimation.
- only simple use of prior. no 1st stage.
- superb ease of use. pto.

so why not?

```
beta <- function(...) coef(lm(...))[2]</pre>
wins.rel <- function( r, rmin, rmax ) {</pre>
   rl <- ifelse( (rmin<rmax), rmin, rmax )</pre>
   ru <- ifelse( (rmin<rmax), rmax, rmin )</pre>
   ifelse( r<rl, rl, ifelse(r>ru, ru, r) )
}
delta <- 2
wri <- wins.rel( ri, (1-delta) *rm, (1+delta) *rm )</pre>
bsw <- beta( wri ~ rm )
wbsw <- beta (wri ~ rm, w=exp(-2*(length(ri):1)/256))
```