Market-Beta

Ivo Welch

Nov 2019

1/66

Motivation

Q: Why still bother with "boring" old market-beta?

- A: Market-beta is interesting even w/o CAPM (ER)
- Measures risk contribution to diversified pfio (m).
- Measures hedging against bear markets
- Down-Beta Theories (as in Ang+ or Lettau+)
- Betting against Beta (as in Frazzini-Pedersen)
- Pragmatic: used in regulation, etc.

- Q: Does estimation make a difference?
- A: Only for individual stocks.
- Matters little for portfolios.
- Any method is roughly equally good.
- Errors average out
- Extreme: value-weighted stock beta is 1.0.

(日本) (日本) (日本)

Performance Metric

Q: How to assess beta estimates?

- A: Prediction
- of future ols(/other) 1-mo or 1-yr market-beta estimates
- never of future average returns.

A (1) > A (2) > A (2) >

Unknown True Beta

- Q: Proxy Estimate vs True Beta?
- A: Wait just a little.
- I will tell you exactly how good my proxies correlate with the true unknown market-beta, not just with the future market-beta.

・ロット (母) ・ ヨ) ・ ヨ)

Unknown True Beta

Need a good benchmark for comparing my estimator:

- 1. OLS obvious (self-) estimator
- 2. Vasicek best performing estimator known.

イロト イボト イヨト イヨト 二日

- random-effects estimator = bayesian shrinkage
- Run OLS Regressions
- Calculate x-sect means and sds of betas
- For each stock i,

$$\mathbf{b}_{i,vck} = \mathbf{w}_i \cdot \mathbf{b}_{xs} + (1 - \mathbf{w}_i) \cdot \mathbf{b}_{i,ts},$$

where
$$w_i = \sigma_{i,ts} / (\sigma_{i,ts} + \sigma_{xs})$$
.

Blume shrinkage \neq Vasicek shrinkage, as claimed by FP

Other Important Choices

- Always use daily stock returns, never monthly.
- Use about 1-3 years of data.
- Never use industry beta for individual stocks.
 - Indeed, they are less noisy;
 - ...just like using "1" low predictive power.
- vasicek has derivatives
 - (random-effects and/or bayesian justification if no drift.)
 - Levi-Welch linear de-bias.

more alternatives below: Dimson, Frazzini-Pedersen, Levi-Welch, Ait-Sahalia-Kalnina-Xiu, Martin-Simin, etc.

Vasicek Disadvantages

- Ad-Hoc (i.e., wrong claim of optimal design)
 - "optimal estimator design" was never suited to problem:
 - vasicek is designed for measurement error,
 - not for underlying beta drift
 - (ergo 12–24 months windows)
- Vasicek has good R², but is badly biased
 - levi-welch (2017) suggests empirical de-biasing
 - requires another linear debiasing stage
- spooky entangled estimates
- requires multi-step ts and xs procedure known, but rarely used.

We Could Use a Simpler Estimator ...and if it is better, all the better!

The New Estimator

Standard Bayesian Use of Prior

- Involves arguments about reasonable priors
- Often painful—days babysitting, not minutes.
- Usually primarily in dedicated estimation papers

- Still involves arguments about reasonable priors
- Easy to use. minutes, not days.
- It's just a robust = winsorizing method.
- Likely novel method.

Market Return

[・]ロ・・母・・ヨ・・ヨ・ のへぐ

Bad Idea Biases Estimator Down

(commonly used)

⁵⁰⁰

Good Idea

(never used afaik)

20/66

Good Idea

(never used afaik) (happens to work a little better)

non-Bayesian use of prior

With wide priors, like –2 to +4, this use should not be very costly, even if the panel is true OLS w/o outliers.

イロト イボト イヨト イヨト 二日

How Different From Bayesian Prior Use?

Very Different! If OLS estimate is $\hat{b} = 0.8$:

- Bayesian use of prior of -2 to +4 would do almost nothing to the resulting beta.
 - Bayesian OLS-type prior would work on overall b estimate.
 - If final is near 1.0, Bayesian method says "just fine."
- ▶ My use of prior of −2 to +4 could still do a lot.
 - ► Here, a prior(-2,4) still influences almost all points, and thus can drastically change estimate, even if estimate is close to 1.0. → can move a b away from 1.0.
 - PS: could use Bayesian with priors on mixed distributions, plain + outliers. Would be painful and rely on distributional priors. No one would use this.

Progress Plan

- Typically, we will predict **b_{i,y} with **b_{i,y-1}:
- Apples to apples: Predicted OLS beta:

$$\mathsf{b^{**}}_{i,y-1}
ightarrow \mathsf{bols}_{i,y}$$

- 1. Direct Proxy Use:-RMSE($bols_{i,y}-b^{**}_{i,y-1}$)
- 2. Rebiase (Best Prediction):R²(bols_{i,y},b**_{i,y-1})
- 1. w/ undecayed 1-year betas: $b^{**}_{i,y-1} \equiv bsw_{i,y-1}$.
- 2. w/ decayed long-history rets: $b^{**}_{i,y-1} \equiv bswa_{i,y-1}$.

(ロ) (同) (目) (日) (日) (0) (0)

Undecayed Slope Winsorized bsw_{i,y-1}

(日)

Recipe: beta slope winsorized (bsw) Will use:

- 1. 12(-24) mos of daily stock returns
- 2. winsorize all returns ($\Delta_s = 3$):

$$\mathsf{rsw}_{i,t} \in \ \left(1.0 + \ \left[-\Delta_s, \Delta_s\right]\right) \cdot \mathsf{r}_{m,t}$$
 .

3. estimate ols market-model

$$\label{eq:rsw_i,t} \begin{split} & \mathsf{rsw}_{i,t} = a_i + \mathsf{bsw}_i \cdot \mathsf{r}_{m,t} + e_{i,t} \\ \\ & \Rightarrow \qquad \mathsf{bsw}_i = \frac{\mathsf{cov}(\mathsf{rsw}_{i,t},\mathsf{r}_{m,t})}{\mathsf{var}(\mathsf{r}_{m,t})} \end{split}$$

イロト イポト イヨト イヨト 二日

Holla? Why $\Delta_S = 3$?

- 1. because we are not doing philosophy or math;
- any time you use a utility function or empirical functional form, you introduce equivalent assumptions;
- 3. we are analyzing empirical data;
- 4. we want parsimony and robustness.

・ロト ・回ト ・ヨト ・ヨト

Holla? Why $\Delta_S = 3$?

- 1. because we are not doing philosophy or math;
- any time you use a utility function or empirical functional form, you introduce equivalent assumptions;
- 3. we are analyzing empirical data;
- 4. we want parsimony and robustness.

F2: why $\Delta_s = 3$?

$\Delta_{\rm S}$ = 3 Seems Sensible

- 1. $\Delta_S = 3$ is in top and bottom percentile of bols.
- 2. No more monotonicity between b_t and $E(b_{t+1})$.
- 3. Not independent, but also not much dependence.
 - fewer than 1% of betas exceed –1 and +3
 - fewer than 0.03% repeat in consecutive years
 - (yes, greater than 1% · 1%, but not by much.)
 - suggests most such extreme betas are more outlier based, than representative.

F4: Sensitivity to Δ_S , Full Sample

Reasonable Assessment for $\Delta_S = 3$

not philosophical, but also not highly searched:

- ► Basecase: $\Delta_S = 3$, i.e., from rsw(b $\in [-2, 4]$)
- ► Reasonable Range: Δ_s ∈ (1.5, 4.0). i.e., from [-0.5, 2.5] or [-3, +5].
- lower Δ_s forces too much towards 1.
- higher Δ_s forces too little.
- Market-beta has an intuitive economic meaning...use it. Different from band winsorization, firm-specific?

イロト イヨト イヨト イヨト 三日

T2: Descriptive Stats

	Mean	SD	Abbrev	Predictor b _{i,t}
Α	0.80	0.21	bols	Past Year Firm-Average OLS
В	0.79	0.68	bols	(Own) OLS Market-Beta
С	0.79	0.55	bVCK	Vasicek Market-Beta
D	0.79	0.41	bLW	Levi-Welch (0.75)
Е	0.71	0.56	blw	Level-Winsorized ($\Delta_l=7\%$)
F	0.79	0.44	bbw	Band-Winsorized (Δ_b =3%)
G	0.79	0.43	bsw	Slope-Winsorized ($\Delta_s=3$)
Н	0.79	0.42		Slope-Wins Then Vasicek
I				Multivariate, bsw and bVCK
J				Multivariate A to G

(日)

T2: Performance (bols_{i,+1})

		Abbrev	RMSE	γ_0	γ_1	R ²
	А	bols	0.700	0.111	0.842	6.09%
	В	bols	0.680	0.332	0.565	27.97%
	С	bVCK	0.604	0.184	0.756	33.38%
	D	bLW	0.589	-0.017	1.008	_"_
-	Е	blw	0.621	0.271	0.721	31.84%
	F	bbw	0.590	0.033	0.943	33.27%
	G	bsw	0.587	0.008	0.977	33.82%
	Н		0.586	-0.014	1.008	33.97%
-	I					34.51%
_	J					34.77%

Can we do better Using Trends? (F5)

37/66

Yeah, but it would have made no difference.

Will show you soon.

(Infinitely but) Decayed Slope Winsorized bswa_{i,y-1}

- Older stock returns are probably less relevant
- No good reason to use (common 1-year) cutoff.

Measure decay as $\rho/256$ per trading day:

$\underline{\rho}$	Decline	Halflife
1.0	0.4%/day	180 trading days
2.0	0.8%/day	90 trading days
3.0	1.2%/day	60 trading days

 $(1.0: 1-1/(1+1.0/252) \approx 0.004)$

イロト イポト イヨト イヨト 二日

F6: 1-Yr Pred bols, 1963–1973

Decay

<ロ> (四) (四) (三) (三) (三)

F6: 1-Yr Pred bols, 1973–2018

Decay

(日) (部) (注) (注) (三)

None greatly useful.

we are really just capturing and winsorizing extremes

・ロ・・聞・・聞・・聞・ のへの

F9: By Year?

year

F9: By Year? — Ex-Post Δ_{S}^{*}

year

F10: By MarketCap?

46/66

・ロト ・回ト ・ヨト ・ヨト

F10: By MarketCap? — Ex-Post Δ_{S}^{*}

market cap

F11: By TradeVol?

48/66

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

F11: By TradeVol? — Ex-Post Δ_S^*

trading volume

F12: By bols_{y,t-1}?

50/66

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

F12: By $bols_{y,t-1}$? — Ex-Post Δ_S^*

F13: By se(bols_{y,t-1})?

_ _ _ _ _ _ _

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

F13: By se(bols_{y,t-1})? — Ex-Post Δ_{S}^{*}

T4: Statistically

- Same Insights in regression format: Minor.
- Maybe a little marketcap or tradving vol
 Larger firms have larger market-betas
- Basic Prediction:
 - **bswa** only: $R^2 = 34.74\%$.
 - Add log dolvol and cross: $R^2 = 35.89\%$.
 - Add log mcap and cross: $R^2 = 35.67\%$.
 - Then explain residuals on log-marketcap model

T4: Ala VCK by stderr(beta)?

- R² with adding all previous (CRSP) variables and x-variables: 0.01% to 0.46% (dollar trading volume).
- R² with adding tons of Compustat ratios: 0.01 to 0.22% (cash/at).

Estimator Benchmarking

Careful to use the same aset!

Y-Variable and Observations !

イロト イポト イヨト イヨト

T6: 2.9 million obs

	(One-Period-Ahead)		(Lagged)					
	Mean	SD	Dependent	Independent	9 ₀	9 ₁	R ² (%)	rmse
A ¹	0.81	0.655	bols	bols	0.30	0.62	38.8	0.562
				bols	0.15	0.82	7.6	0.622
				bVCK	0.17	0.79	43.7	0.498
				bdim	0.38	0.46	27.9	0.685^{\dagger}
				bsw	0.10	0.88	44.2	0.486
				bswa	0.07	0.92	46.2	0.475
В	0.80	0.539	bVCK	bVCK	0.23	0.71	50.6	0.411
				bswa	0.14	0.83	53.4	0.377
С	0.91	0.731	bdim	bdim	0.48	0.47	22.0	0.756
				bswa	0.21	0.86	31.6	0.617
D	0.80	0.485	bsw	bsw	0.21	0.73	53.9	0.355
				bswa	0.19	0.76	56.3	0.340
Е	0.80	0.474	bswa	bswa	0.17	0.78	62.4	0.308

T6: 2.9 million obs

	Dep	Indep	9 ₀	9 ₁	$R^{2}_{(\%)}$	rmse
A ¹	bols	bols	0.30	0.62	38.8	0.562
		bols	0.15	0.82	7.6	0.622
		bVCK	0.17	0.79	43.7	0.498
		bdim	0.38	0.46	27.9	0.685 [†]
		bsw	0.10	0.88	44.2	0.486
		bswa	0.07	0.92	46.2	0.475

T6: 2.9 million obs

_	Dep	Indep	9 ₀	9 ₁	$R^{2}_{(\%)}$	rmse
С	bdim	bdim	0.48	0.47	22.0	0.756
		bswa	0.21	0.86	31.6	0.617
D	bsw	bsw	0.21	0.73	53.9	0.355
		bswa	0.19	0.76	56.3	0.340
Е	bswa	bswa	0.17	0.78	62.4	0.308

<ロ> <同> <同> < 回> < 回> < 回> = 三

Unknown True Beta

Can Assess!

- If two proxies are drawn with noise from true value, the expected R² of each proxy with the true value is the squareroot of the R² of one proxy with the other proxy.
- If underlying beta is constant, and the R² of last year's beta estimate (proxy) with this year's beta estimate is 49%, then the association of one-year beta estimates with underlying true unknown betas is √56% = 75% (cor > 87%).
- Conservative: If beta is moving, then bsw should be R² > 75%.
- Conservative: If beta is moving, then bswa should be R² > 79%.

Side Note

- bsw on bsw: 53.9% bswa on bswa: 62.4%
- ► \Rightarrow bswa on true β : > 79% R², 89% correlation.
- Higher if time-varying beta
- This was equal-weighted, many small stocks. higher if we excluded noisiest stocks.

Τ7	T7: Martin-Simin Robust (2.0M)						
		Dep	Indep	9 ₀	9 ₁	R ² _(%) rmse	
	A ²	bols	bols	0.29	0.62	38.8 0.542	
			bsw	0.09	0.88	44.0 0.472	
			bswa	0.06	0.92	46.0 0.461	
			bmm	0.30	0.69	42.5 0.514	
			blts	0.33	0.68	40.5 0.533	
	F	bmm	bmm	0.21	0.70	49.7 0.453	
			bswa	-0.02	0.92	52.3 0.417	
	G	blts	blts	0.21	0.68	45.7 0.472	
			bswa	-0.04	0.89	49.7 0.438	1

T8: Frazzini-Pedersen (1.4M)

	Dep	Indep	9 ₀	9 ₁	$R^{2}_{(\%)}$	rmse
A ³	bols	bols	0.28	0.65	42.8	0.512
		bfp	-0.10	0.92	29.9	0.547
		bswa	0.07	0.93	49.2	0.439
Н	bfp	bfp	0.54	0.46	20.6	0.385
		bols	0.74	0.31	27.1	0.564
		bswa	0.64	0.44	31.1	0.449

E

イロン イヨン イヨン イヨン

T9: Ait-Sahalia, Kalnina, Xiu (940k)

	(Dep)	(Indep)	9 ₀	9 ₁	${\sf R}^{2}_{(\%)}$
A^4	bols (1 mo)	btaq1 (1 mo)	0.67	0.33	7.4
		bswa (1 yr)	-0.04	1.08	17.1
I	btaq1 (1 mo)	btaq1 (1 mo)	0.63	0.31	9.7
		bswa (1 yr)	0.01	0.97	20.6

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Does it matter?

Are betas different? Mean RMSE between bswa and:

bols	0.47				
bols	0.20	bmm	0.17	bmols	0.46
bVCK	0.15	blts	0.21	bmvck	0.44
blw	0.19	bdim	0.40	btaq1	0.64
bbw	0.15	bfp	0.29	btaq12	0.25
bsw	0.10				

イロト イヨト イヨト イヨト 一日

Simple Code:

}

```
_bswa <- function( ri, rm, Delta, rho ) {
  wins.rel <- function( r, rmin, rmax ) {
    rlo <- pmin(rmin,rmax); rhi <- pmax(rmin,rmax)
    ifelse( r<rlo, rlo, ifelse( r>rhi, rhi, r ) ) }
```

```
wri <- wins.rel( ri, (1-Delta)*rm, (1+Delta)*rm )
beta <- function(...) coef(lm(...))[2]</pre>
```

```
# ri and rm must be increasing in time
bsw <- beta( wri ~ rm, w=exp(-rho*(length(ri):1)) )</pre>
```

```
bsw <- function( ... ) _bswa( ... , Delta=3.0, rho=0.0 )
bswa <- function( ... ) _bswa( ..., Delta=3.0, rho=2.0/256</pre>
```

CFR Commercial

- Liquidity Issue Coming Out Soon. Acharya-Pederson. Amihud. Pastor-Stambaugh.
- Specialty: Provocative papers. Critiques. But others, too. Less Theory.
- PhD Students: Updates (cannot possibly upset authors—just newer data).
- Per paper CFR recursive 10-year impact is now between JFE and JFQA/RF.