Market-Beta

Ivo Welch

Nov 2019

Motivation

Q: Why still bother with "boring" old market-beta?
A: Market-beta is interesting even w/o CAPM (ER)

- Measures risk contribution to diversified pfio (m).
- Measures hedging against bear markets
- Down-Beta Theories (as in Ang+ or Lettau+)
- Betting against Beta (as in Frazzini-Pedersen)
- Pragmatic: used in regulation, etc.

Estimation

Q: Does estimation make a difference?
A: Only for individual stocks.

- Matters little for portfolios.
- Any method is roughly equally good.
- Errors average out
- Extreme: value-weighted stock beta is 1.0.

Performance Metric

Q: How to assess beta estimates?
A: Prediction

- of future ols(/other) 1-mo or 1-yr market-beta estimates
- never of future average returns.

Unknown True Beta

Q: Proxy Estimate vs True Beta?
A: Wait just a little.

- I will tell you exactly how good my proxies correlate with the true unknown market-beta, not just with the future market-beta.

Unknown True Beta

Need a good benchmark for comparing my estimator:

1. OLS - obvious (self-) estimator
2. Vasicek - best performing estimator known.

Vasicek

- random-effects estimator = bayesian shrinkage
- Run OLS Regressions
- Calculate x-sect means and sds of betas
- For each stock i,

$$
b_{i, v c k}=w_{i} \cdot b_{x s}+\left(1-w_{i}\right) \cdot b_{i, t s}
$$

where $\mathrm{w}_{\mathrm{i}}=\sigma_{\mathrm{i}, \mathrm{ts}} /\left(\sigma_{\mathrm{i}, \mathrm{ts}}+\sigma_{\mathrm{Xs}}\right)$.

- Blume shrinkage \neq Vasicek shrinkage, as claimed by FP

Other Important Choices

- Always use daily stock returns, never monthly.
- Use about 1-3 years of data.
- Never use industry beta for individual stocks.
- Indeed, they are less noisy;
- ...just like using "1" - low predictive power.
- vasicek has derivatives
- (random-effects and/or bayesian justification if no drift.)
- Levi-Welch linear de-bias.
more alternatives below: Dimson, Frazzini-Pedersen, Levi-Welch, Ait-Sahalia-Kalnina-Xiu, Martin-Simin, etc.

Vasicek Disadvantages

- Ad-Hoc (i.e., wrong claim of optimal design)
- "optimal estimator design" was never suited to problem:
- vasicek is designed for measurement error,
- not for underlying beta drift
- (ergo 12-24 months windows)
- Vasicek has good R^{2}, but is badly biased
- levi-welch (2017) suggests empirical de-biasing
- requires another linear debiasing stage
- spooky entangled estimates
- requires multi-step ts and xs procedure known, but rarely used.

We Could Use a Simpler Estimator

 ...and if it is better, all the better!
The New Estimator

Standard Bayesian Use of Prior

Data
Posterior

- Involves arguments about reasonable priors
- Often painful—days babysitting, not minutes.
- Usually primarily in dedicated estimation papers
(Ab-)Use of Prior
Data X

Posterior

Priors

- Still involves arguments about reasonable priors
- Easy to use. minutes, not days.
- It's just a robust = winsorizing method.
- Likely novel method.

Market Return

Bad Idea

Biases Estimator Down

(commonly used)

Good Idea

(never used afaik)

Market Return

Good Idea

(never used afaik)
(happens to work a little better)

- non-Bayesian use of prior
- With wide priors, like -2 to +4 , this use should not be very costly, even if the panel is true OLS w/o outliers.

How Different From Bayesian Prior Use?

Very Different! If OLS estimate is $\hat{b}=0.8$:

- Bayesian use of prior of -2 to +4 would do almost nothing to the resulting beta.
- Bayesian OLS-type prior would work on overall \hat{b} estimate.
- If final is near 1.0, Bayesian method says "just fine."
- My use of prior of -2 to +4 could still do a lot.
- Here, a prior(-2,4) still influences almost all points, and thus can drastically change estimate, even if estimate is close to $1.0 . \rightarrow$ can move a \hat{b} away from 1.0.
- PS: could use Bayesian with priors on mixed distributions, plain + outliers. Would be painful and rely on distributional priors. No one would use this.

Progress Plan

- Typically, we will predict ${ }^{* *} \mathrm{~b}_{\mathrm{i}, \mathrm{y}}$ with ${ }^{* *} \mathrm{~b}_{\mathrm{i}, \mathrm{y}-1}$:
- Apples to apples: Predicted OLS beta:

$$
\mathrm{b}^{* *}{ }_{i, y-1} \rightarrow \text { bols }_{i, y}
$$

1. Direct Proxy Use: $\ldots \ldots$. -RMSE(bols $\left.\mathrm{s}_{\mathrm{i}, \mathrm{y}}-\mathrm{b}^{* *}{ }_{i, \mathrm{y}-1}\right)$
2. Rebiase (Best Prediction): $\ldots \ldots \ldots \ldots . . R^{2}\left(\right.$ bols $\left._{i, y},{ }^{\prime}{ }^{* *}{ }_{i, y-1}\right)$
3. $w /$ undecayed 1-year betas: $b^{* *}{ }_{i, y-1} \equiv \mathrm{bsw}_{i, y-1}$.
4. $w /$ decayed long-history rets: $b^{\star *}{ }_{i, y-1} \equiv b s w a_{i, y-1}$.

Plan

Undecayed Slope Winsorized

$\mathrm{bsw}_{\mathrm{i}, \mathrm{y}-1}$

Recipe: beta slope winsorized (bsw)

 Will use:1. 12(-24) mos of daily stock returns
2. winsorize all returns $\left(\Delta_{S}=3\right)$:

$$
\mathrm{rsw}_{\mathrm{i}, \mathrm{t}} \in\left(1.0+\left[-\Delta_{\mathrm{s}}, \Delta_{\mathrm{s}}\right]\right) \cdot \mathrm{r}_{\mathrm{m}, \mathrm{t}}
$$

3. estimate ols market-model

$$
\begin{aligned}
& \mathrm{rsw}_{\mathrm{i}, \mathrm{t}}=\mathrm{a}_{\mathrm{i}}+\mathrm{bsw}_{\mathrm{i}} \cdot r_{m, t}+\mathrm{e}_{\mathrm{i}, \mathrm{t}} \\
& \Rightarrow \quad \mathrm{bsw} \\
& \Rightarrow \quad \frac{\operatorname{cov}\left(\mathrm{rsw}_{\mathrm{i}, \mathrm{t}}, r_{m, t}\right)}{\operatorname{var}\left(r_{m, t}\right)}
\end{aligned}
$$

Holla? Why $\Delta_{S}=3$?

Holla? Why $\Delta_{S}=3$?

1. because we are not doing philosophy or math;
2. any time you use a utility function or empirical functional form, you introduce equivalent assumptions;
3. we are analyzing empirical data;
4. we want parsimony and robustness.

F2: why $\Delta_{\mathrm{s}}=3$?

$\Delta_{S}=3$ Seems Sensible

1. $\Delta_{\mathrm{S}}=3$ is in top and bottom percentile of bols.
2. No more monotonicity between b_{t} and $E\left(b_{t+1}\right)$.
3. Not independent, but also not much dependence.

- fewer than 1% of betas exceed -1 and +3
- fewer than 0.03% repeat in consecutive years
- (yes, greater than $1 \% \cdot 1 \%$, but not by much.)
- suggests most such extreme betas are more outlier based, than representative.

F4: Sensitivity to Δ_{S}, Full Sample

Reasonable Assessment for $\Delta_{S}=3$

- not philosophical, but also not highly searched:
- Basecase: $\Delta_{S}=3$, i.e., from rsw(b $\left.\in[-2,4]\right)$
- Reasonable Range: $\Delta_{\mathrm{s}} \in(1.5,4.0)$.
i.e., from $[-0.5,2.5]$ or $[-3,+5]$.
- lower Δ_{S} forces too much towards 1.
- higher Δ_{S} forces too little.
- Market-beta has an intuitive economic meaning...use it. Different from band winsorization, firm-specific?

T2: Descriptive Stats

Mean SD Abbrev Predictor $\mathrm{b}_{\mathrm{i}, \mathrm{t}}$

A	0.80	0.21	$\overline{\text { bols }}$	Past Year Firm-Average OLS
B	0.79	0.68	bols	(Own) OLS Market-Beta
C	0.79	0.55	bVCK	Vasicek Market-Beta
D	0.79	0.41	bLW	... Levi-Welch (0.75)
E	0.71	0.56	blw	Level-Winsorized $\left(\Delta_{\mathrm{l}}=7 \%\right)$
F	0.79	0.44	bbw	Band-Winsorized $\left(\Delta_{\mathrm{b}}=3 \%\right)$
G	0.79	0.43	bsw	Slope-Winsorized $\left(\Delta_{\mathrm{s}}=3\right)$
H	0.79	0.42		Slope-Wins Then Vasicek
I				Multivariate, bsw and bVCK
J				Multivariate A to G

T2: Performance $\left(\right.$ bols $\left._{\mathrm{i},+1}\right)$

	Abbrev	RMSE	γ_{0}	γ_{1}	R^{2}
A	$\overline{\text { bols }}$	0.700	0.111	0.842	6.09%
B	bols	0.680	0.332	0.565	27.97%
C	bVCK	0.604	0.184	0.756	33.38%
D	bLW	0.589	-0.017	1.008	- -"-
E	blw	0.621	0.271	0.721	31.84%
F	bbw	0.590	0.033	0.943	33.27%
G	bsw	0.587	0.008	0.977	33.82%
H		0.586	-0.014	1.008	33.97%
I					34.51%
J					34.77%

Can we do better Using Trends? (F5)

Did I Peek?

Yeah, but it would have made no difference.

Will show you soon.

Plan

(Infinitely but)
 Decayed Slope Winsorized

bswa $_{\mathrm{i}, \mathrm{y}-1}$

Decay

- Older stock returns are probably less relevant
- No good reason to use (common 1-year) cutoff.

Measure decay as $\rho / 256$ per trading day:

ρ	$\underline{\text { Decline }}$	
1.0	$0.4 \% /$ Halflife	
2.0		180 trading days
3.0	$0.8 \% /$ day	
	90 trading days	
	1.2\%) day	
60 trading days		

$(1.0: 1-1 /(1+1.0 / 252) \approx 0.004)$

F6: 1-Yr Pred bols, 1963-1973

F6: 1-Yr Pred bols, 1973-2018

Refinements?

None greatly useful.

we are really just capturing and winsorizing extremes

F9: By Year?

F9: By Year? — Ex-Post Δ_{S}^{*}

F10: By MarketCap?

F10: By MarketCap? - Ex-Post Δ_{S}^{*}

F11: By TradeVol?

F11: By TradeVol? - Ex-Post Δ_{S}^{*}

F12: By bols ${ }_{y, t-1}$?

F12: By bols ${ }_{y, t-1}$? - Ex-Post Δ_{S}^{*}

F13: By se(bols $\left.{ }_{y, t-1}\right) ?$

F13: By se(bols $\left.{ }_{\mathrm{y}, \mathrm{t}-1}\right) ?$ - Ex-Post Δ_{S}^{*}

T4: Statistically

- Same Insights in regression format: Minor.
- Maybe a little marketcap or tradving vol
- Larger firms have larger market-betas
- Basic Prediction:
- bswa only: $\mathrm{R}^{2}=34.74 \%$.
- Add log dolvol and cross: $\mathrm{R}^{2}=35.89 \%$.
- Add log mcap and cross: $\mathrm{R}^{2}=35.67 \%$.
- Then explain residuals on log-marketcap model

T4: Ala VCK by stderr(beta)?

- R^{2} with adding all previous (CRSP) variables and x-variables: 0.01\% to 0.46\% (dollar trading volume).
- R^{2} with adding tons of Compustat ratios: 0.01 to 0.22\% (cash/at).

Estimator Benchmarking

Careful to use the same aset!
 Y-Variable and Observations!

T6: 2.9 million obs

(One-Period-Ahead)				(Lagged)				
	Mean	SD	Dependent	Independent	g_{0}	g_{1}	$\mathrm{R}^{2}{ }_{\text {\% }}$	rmse
A^{1}	0.81	0.655	bols	bols	0.30	0.62	38.8	0.562
				$\overline{\text { bols }}$	0.15	0.82	7.6	0.622
				bVCK	0.17	0.79	43.7	0.498
				bdim	0.38	0.46	27.9	0.685^{\dagger}
				bsw	0.10	0.88	44.2	0.486
				bswa	0.07	0.92	46.2	0.475
B	0.80	0.539	bVCK	bVCK	0.23	0.71	50.6	0.411
				bswa	0.14	0.83	53.4	0.377
C	0.91	0.731	bdim	bdim	0.48	0.47	22.0	0.756
				bswa	0.21	0.86	31.6	0.617
D	0.80	0.485	bsw	bsw	0.21	0.73	53.9	0.355
				bswa	0.19	0.76	56.3	0.340
E	0.80	0.474	bswa	bswa	0.17	0.78	62.4	0.308

T6: 2.9 million obs

Dep Indep $g_{0} \quad g_{1} \quad R^{2}{ }^{2}$ (\%) rmse
$\begin{array}{llllll}A^{1} & \text { bols bols } & 0.30 & 0.62 & 38.8 & 0.562\end{array}$
$\begin{array}{lllll}\text { bols } & 0.15 & 0.82 & 7.6 & 0.622\end{array}$
$\begin{array}{lllll}\text { bVCK } & 0.17 & 0.79 & 43.7 & 0.498\end{array}$
$\begin{array}{lllll}\text { bdim } & 0.38 & 0.46 & 27.9 & 0.685^{\dagger}\end{array}$
$\begin{array}{lllll}\text { bsw } & 0.10 & 0.88 & 44.2 & 0.486\end{array}$
bswa $0.07 \quad 0.92 \quad 46.2 \quad 0.475$

T6: 2.9 million obs

	Dep	Indep	g_{0}	g_{1}	$R_{(\%)}^{2}$	rmse
C	bdim	bdim	0.48	0.47	22.0	0.756
		bswa	0.21	0.86	31.6	$\mathbf{0 . 6 1 7}$

$\begin{array}{lllllll}\text { D bsw bsw } & 0.21 & 0.73 & 53.9 & 0.355\end{array}$ $\begin{array}{lllll}\text { bswa } & 0.19 & 0.76 & 56.3 & 0.340\end{array}$
$\begin{array}{lllllll}E & b s w a & b s w a & 0.17 & 0.78 & 62.4 & 0.308\end{array}$

Unknown True Beta

Can Assess!

- If two proxies are drawn with noise from true value, the expected R^{2} of each proxy with the true value is the squareroot of the R^{2} of one proxy with the other proxy.
- If underlying beta is constant, and the R^{2} of last year's beta estimate (proxy) with this year's beta estimate is 49%, then the association of one-year beta estimates with underlying true unknown betas is $\sqrt{56 \%}=75 \%$ ($\operatorname{cor}>87 \%$).
- Conservative: If beta is moving, then bsw should be $R^{2}>75 \%$.
- Conservative: If beta is moving, then bswa should be $R^{2}>79 \%$.

Side Note

- bsw on bsw: 53.9\% bswa on bswa: 62.4\%
- \Rightarrow bswa on true β : $>79 \% \mathrm{R}^{2}, 89 \%$ correlation.
- Higher if time-varying beta
- This was equal-weighted, many small stocks. higher if we excluded noisiest stocks.

T7: Martin-Simin Robust (2.0M)

Dep Indep $\quad g_{0} \quad g_{1} \quad R_{(8)}^{2}$ rmse
A 2 bols bols $0.29 \quad 0.62 \quad 38.80 .542$ $\begin{array}{llllll}\text { bsw } & 0.09 & 0.88 & 44.0 & 0.472\end{array}$ $\begin{array}{llllll}\text { bswa } & 0.06 & 0.92 & 46.0 & 0.461\end{array}$ $\begin{array}{lllll}\mathrm{bmm} & 0.30 & 0.69 & 42.5 & 0.514\end{array}$ $\begin{array}{llllll}\text { blts } & 0.33 & 0.68 & 40.5 & 0.533\end{array}$
$\begin{array}{lllllll}\text { F } & \text { bmm bmm } & 0.21 & 0.70 & 49.7 & 0.453\end{array}$ $\begin{array}{llllll}\text { bswa } & -0.02 & 0.92 & 52.3 & 0.417\end{array}$
$\begin{array}{llllll}G & \text { blts blts } & 0.21 & 0.68 & 45.7 & 0.472\end{array}$ $\begin{array}{llllll}\text { bswa } & -0.04 & 0.89 & 49.7 & 0.438\end{array}$

T8: Frazzini-Pedersen (1.4M)

Dep Indep $\quad g_{0} \quad g_{1} \quad R_{\text {(\%) }}^{2}$ rmse
$\begin{array}{llllll}A^{3} & \text { bols bols } & 0.28 & 0.65 & 42.8 & 0.512\end{array}$ $\begin{array}{llllll}\text { bfp } & -0.10 & 0.92 & 29.9 & 0.547\end{array}$ $\begin{array}{lllll}\text { bswa } & 0.07 & 0.93 & 49.2 & 0.439\end{array}$
$\begin{array}{lllllll}H & \text { bfp bfp } & 0.54 & 0.46 & 20.6 & 0.385\end{array}$ bols $\quad 0.74 \begin{array}{llll} & 0.31 & 27.1 & 0.564\end{array}$
$\begin{array}{lllll}\text { bswa } & 0.64 & 0.44 & 31.1 & 0.449\end{array}$

T9: Ait-Sahalia, Kalnina, Xiu (940k)

(Dep) (Indep) $\quad g_{0} \quad g_{1} \quad R_{\text {(eo) }}^{2}$
$A^{4} \quad$ bols (1 mo) btaq1 (1 mo) $\quad 0.67 \quad 0.33 \quad 7.4$ bswa (1 yr) $-0.04 \quad 1.08 \quad 17.1$

I btaq1 (1 mo) btaq1 (1 mo) $0.630 .31 \quad 9.7$ bswa (1 yr) $\quad 0.01 \quad 0.97 \quad 20.6$

Does it matter?

Are betas different? Mean RMSE between bswa and:
bols 0.47
bols 0.20 bmm 0.17 bmols 0.46
bVCK 0.15 blts 0.21 bmvck 0.44 blw 0.19 bdim 0.40 btaq1 0.64 bbw 0.15 bfp 0.29 btaq12 0.25 bsw 0.10

Simple Code:

```
_bswa <- function( ri, rm, Delta, rho ) {
    wins.rel <- function( r, rmin, rmax ) {
        rlo <- pmin(rmin,rmax); rhi <- pmax(rmin,rmax)
        ifelse( r<rlo, rlo, ifelse( r>rhi, rhi, r ) ) }
    wri <- wins.rel( ri, (1-Delta)*rm, (1+Delta)*rm )
    beta <- function(...) coef(lm(...)) [2]
    # ri and rm must be increasing in time
    bsw <- beta( wri ~ rm, w=exp(-rho*(length(ri):1)) )
}
bsw <- function( ... ) __bswa( ... , Delta=3.0, rho=0.0 )
bswa <- function( ... ) __bswa( ..., Delta=3.0, rho=2.0/256
```


CFR Commercial

- Liquidity Issue Coming Out Soon. Acharya-Pederson. Amihud. Pastor-Stambaugh.
- Specialty: Provocative papers. Critiques. But others, too. Less Theory.
- PhD Students: Updates (cannot possibly upset authors-just newer data).
- Per paper CFR recursive 10-year impact is now between JFE and JFQA/RF.

