Market-Beta

Ivo Welch

May 2019

Notice to PhD Students

This presentation is intended to teach how not to commit suicide on the job market.

Notice to PhD Students

This presentation is intended to teach how not to commit suicide on the job market.

Because, what you need is

I am not saying it's right.
I am saying I am impressed.

(PS: On the job market, it will be cleverness, not necessarily mathiness, that matters.)

Why Not Job Market?

- My brownbag paper is way too simple,
- ...and it is not about
 - new data,
 - big data,
 - new small data.
 - and/or clever quasi-experimental identification.

Why Not Job Market?

- My brownbag paper is way too simple,
- ...and it is not about
 - new data,
 - big data,
 - new small data,
 - and/or clever quasi-experimental identification.

So why bother?

- It's actually very useful, and
- you will actually want to use this in your lifetime,
- ...and it saved your Wednesday lunch.

_					
3	Date	Name			,
4	Wednesday, April 10, 2019				
5	Wednesday, April 17, 2019				
6	Wednesday, April 24, 2019		only if no one else w	ants to present: Iv	o Welch
7	Wednesday, May 1, 2019	Bernard Herskovic			
_	141 1 1 14 0 0040				

so no complaints, please.

So why bother?

- It's actually very useful, and
- you will actually want to use this in your lifetime,
- ...and it saved your Wednesday lunch.

_				
3	Date	Name		
4	Wednesday, April 10, 2019			
5	Wednesday, April 17, 2019			
6	Wednesday, April 24, 2019		only if no one else w	ants to present: Ivo Welch
7	Wednesday, May 1, 2019	Bernard Herskovic		
_	14/ 1 1 14 0 0040			

so no complaints, please.

Breaks Chernov Rule

- not "serious" research
- instead: this is a "Tinker With Data" paper

Breaks Chernov Rule

- not "serious" research
- instead: this is a "Tinker With Data" paper

Motivation

Why still bother with "boring" old market-beta?

- Market-beta is interesting even w/o CAPM
 - Measure of risk contribution to diversified portfolios.
 - Hedging against bear markets
 - Down-Beta Theories (as in Ang+ or Lettau+)
 - Betting against Beta (as in Frazzini-Pedersen)
 - Pragmatic: used in regulation, etc.
- How should we estimate beta?
 - And can it make a difference?

Performance Metric

I will judge beta quality by prediction.

- future ols(/other) 1-mo or 1-yr market-beta estimates
- never future average returns.

PS: If two proxies are drawn with noise from true value, the expected R² of each proxy with the true value is the squareroot of the R² of one proxy with the other proxy.

Performance Metric

I will judge beta quality by prediction.

- future ols(/other) 1-mo or 1-yr market-beta estimates
- never future average returns.

▶ PS: If two proxies are drawn with noise from true value, the expected R² of each proxy with the true value is the squareroot of the R² of one proxy with the other proxy.

Best Beta Estimator Known: Vasicek

- random-effects estimator = bayesian shrinkage
- ► Run OLS Regressions
- Calculate x-sect means and sds of betas
- ► For each stock,

$$b_{VCK} = w \cdot b_{XS} + (1 - w) \cdot b_{tS},$$

where $w = \sigma_{ts}/(\sigma_{ts} + \sigma_{xs})$.

Other Important Choices

- Always use daily stock returns
- about 1-3 years of data.
- Never use industry beta for individual stocks.
 - Indeed, less noisy;
 - but just like using "1" low predictive power.
- vasicek and its derivatives
 - (random-effects and/or bayesian justification if no drift.)
 - Levi-Welch linear de-bias.

more alternatives below: Dimson, Frazzini-Pedersen

Vasicek Disadvantages

- "Pseudo Optimal"
 - "optimal design" was never suited to problem:
 - vasicek is designed for measurement error,
 - not for underlying beta drift
 - (ergo 12–24 months windows)
- good R², but badly biased
 - levi-welch (2017) suggests empirical de-biasing
 - requires another stage
- spooky entangled estimates
- requires multi-step ts and xs procedure

Better and Simpler Estimator

Standard Bayesian Use of Prior

- Involves arguments about reasonable priors
- Often painful—days babysitting, not minutes.
- Usually primarily in dedicated papers

(Ab-)Use of Prior

- Still involves arguments about reasonable priors
- Easy to use. minutes, not days.
- Likely novel method.

- non-Bayesian use of prior
- with wide priors, not very costly, even if panel is true OLS w/o outliers.
- Note: Even if $\hat{b} = 0.8$, the prior is still effective on individual points.
 - ► Bayesian OLS-type prior would work on overall b estimate.
 - If final is near 1.0, Bayesian method says "just fine."
 - ► Here, a prior(-1,3) still influences points, and thus even estimates close to 1.0. \rightarrow can move a \hat{b} away from 1.0.
 - PS: could use Bayesian with priors on mixed distributions, plain + outliers. Would work, too, but far more painful.

beta slope winsorized (bsw)

- 1. 12–24 mos of **daily** stock returns
- 2. winsorize all returns ($\Delta_s = 2$):

$$rsw_{i,t} \in \ 1.0 + \ \left[\ -\Delta_s, \Delta_s \ \right] \cdot r_{m,t} \ .$$

3. estimate ols market-model

$$rsw_{i,t} = a_i + bsw_i \cdot r_{m,t}$$

(just a reuse of the model with a reasonable prior. note: model-specific.)

why $\Delta_S = 2$?

- fewer than 1% of betas exceed –1 and +3
- fewer than 0.03% repeat in consecutive years
 - ▶ (greater than 1% · 1%, but not by much.
- beyond, no monotonicity between b_t and E(b_{t+1})
- not philosophical, but also not highly searched:
 - you could also use [-0.5, 2.5] or [-3, 5].
 - lower Δ_s forces too much towards 1.
 - higher Δ_s forces nada.

does it matter?

are betas even different?

```
rmsd ( bols_D , bsw ) \approx 0.37 rmsd ( bvck_D , bsw ) \approx 0.20 rmsd ( bols_M , bsw ) \approx 0.60
```

"gamma" panel reg for bolst+1

Dependent: future 1-year ols beta from daily returns, same set.

	γ ₀	$se(\gamma_0)$	γ ₁	$se(\gamma_1)$	R ²
(bols)	0.34	.004	0.54	.005	25.5%
(bvck)	0.19	.002	0.74	.002	30.8%
(blw)	-0.01	.003	0.98	.003	same
level (blw)	0.27	.002	0.70	.003	29.7%
band (bbw)	0.04	.002	0.93	.003	30.9%
slope (bsw)	0.01	.002	0.96	.003	31.4%
slope + v	-0.01	.003	1.00	.003	31.5%

True R^2 is squareroot. $\sqrt{.3} \approx 0.55$.

Nothing Sensitive or Edgy

- very stable by year.
- very stable by ols beta.
- no meaningful improvement by varying Δ_s.
 - even by own lagged beta, beta-sd, marketcap, trading volume, volatility, etc.

RMSE by ols se(b) Percentile

Δ^* by ols se(b) Percentile

possible improvements: obtain ols b se rank, then

- ▶ more winsorization ($\Delta_s = 1.5$) for > 85% and 1 for > 95%.
- but stable from 5 to 80 and look at absolute improvement,
- only the 95%+ do.
- → 1st-stage firm-specific deltas won't help much, on avg.

RMSE by Market Cap Percentile

Δ^* by market cap percentile

possible improvements: obtain mcap rank, then

- ▶ more winsorization ($\Delta_s = 1.5$) for small-caps (rank < 40%),
- less winsorization ($\Delta_s = 3$) for big-caps (rank > 80%).

Another 2% R² Improvement

- retain 1-pass simplicity of use
- WLS market-model, w=f(age)

steep exponential decline:

	Now	3 mo	6mo	1yr	2yr
WLS w	100%	80%	50%	10%	2%

- ► PS: this WLS decay allowed for a kink
- ▶ want approx formula? $\approx \exp[-2(\Delta days)/252]$
- trivially easy in time
- no marginal loss of observations

PS: Mean Reversion on Monthly BSW

- not fixing outliers suggests faster mean reversion of beta
- need to estimate mean reversion of betas after fixing outliers

PS: Mean Reversion on Monthly BSW

Note: weighting is not the same as tilting.

Months

Note: dependent ne OLS, but BSW. Indep is WLS.BSW. Daily Stock Returns.

another 1% R² improvement

- no longer simple, 1-pass, no-obs-loss
- add one extra variable reflecting firm-size or dollar trading volume.
 - big firms have bigger market-betas (yes!),
 - but use requires first-stage regression,
 - and marketcap requires merging, data loss, etc.
- I could find no other useful accounting compustat or crsp derived variable or ratio.

Dimson + Frazzini-Pedersen

care for	, <u> </u>	R ² with x _t being only			
$y_{t+1} \downarrow \\$	ols	bsw	vck	dim	fp
ols	38%	44%	43%	28%	27%

(Monthly-overlaps)

Dimson + Frazzini-Pedersen

care for		R ² with x _t being only				
$y_{t+1} \downarrow$	ols	bsw	vck	dim	fp	
ols	38%	44%	43%	28%	27%	
vck		51%	50%			
bsw		57%	\Rightarrow R ² to	$eta_{ ext{true}}$ should	I be \approx 75%	
dim		30%		22%		
fp		30%			21%	

 $[\]rightarrow$ what should you use if you care (but why?) about future dimson or fp estimates? (Monthly-overlaps)

- if you are interested in future Dimson beta,

 → use current bsw
 - → use current bsw never use current Dimson beta as estimator
- if you are interested in future Frazzini-Pedersen beta.
 - → use current bsw never use current FP beta as estimator
- did they ever try to validate their measures?

Monthly-Frequency Return Data?

- even long-window monthly betas are miserable predictors of anything (like R² of < 15%, not 40%).
- daily predicts monthly better than monthly itself.
- → use daily frequency even if interested in future monthly market betas.

Future

Can some of this be generalized?

- To what extent can we use our prior information to manipulate the incoming data first,
- and then run plain classical procedures,
- because Bayesian methods are so painful that only dedicated B papers are using them.
- (e.g., stick fitted values w/ se [as weights?] from 1st-stage OLS into 2nd-stage OLS?)

Conclusion

- novel slope winsorization method afaik, with use of prior in different way,
- novel application of winsorization method in important context of market-beta estimation.
- only simple use of prior. no 1st stage needed.
- superb ease of use. pto.

So Why Not?

```
wins.rel <- function( r, rmin, rmax ) {</pre>
   rl <- ifelse( (rmin<rmax), rmin, rmax )</pre>
   ru <- ifelse( (rmin<rmax), rmax, rmin )</pre>
   ifelse( r<rl, rl, ifelse(r>ru, ru, r) )
delta < -2
wri <- wins.rel( ri, (1-delta)*rm, (1+delta)*rm )</pre>
beta <- function(...) coef(lm(...))[2]
bsw <- beta( wri ~ rm )</pre>
wbsw <- beta (wri ~ rm, w=exp(-2*(length(ri):1)/256))
                 ## note age = reverse-time weights
```