Market-Beta and Downside Risk

Yaron Levi and Ivo Welch

Oct 2018

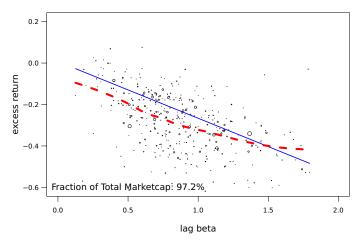
Seawell Boardroom (B400), Bass Center, 655 Knight Way, Stanford, CA, 8:00am

Our paper has three connected parts:

- All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)
 - Critique = Perspective. All results are replicable
 - ▶ Definition: Down-beta is on days when $R_M < 0$.
- 3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

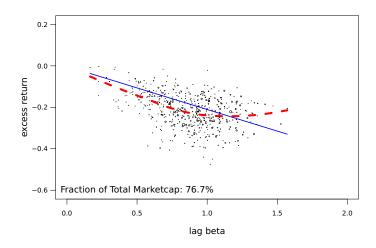
Our paper has three connected parts:

- 1. All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- 2. A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)
 - Critique = Perspective. All results are replicable
 - ightharpoonup Definition: Down-beta is on days when $R_M < 0$
- 3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

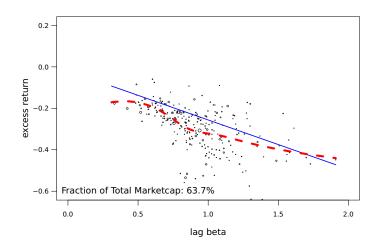

Our paper has three connected parts:

- 1. All-days market-beta is a good measure of stocks' hedging aspects for bear and crash markets.
- 2. A strong critique of downside beta in equities (Ang-Chen-Xing (2006), > 200 WoS > 800 Google)
 - Critique = Perspective. All results are replicable.
 - Definition: Down-beta is on days when R_M < 0.
- 3. A mild critique of downside beta in asset classes (Lettau-Maggiori-Weber (2014)).

Part 1: Plain Beta As Hedge Metric


- Lots of detail (in the paper).
 - ▶ Daily-return "all-days" betas. OLS and/or others.
- Result: Plain=all-days beta is a good exposure measure also for down and crash markets.
- Will just show you the 3 extreme periods.
 - Betas are estimated ex-ante (all-days)
 - Market performance is realized in-time.
 - Select= Crash. Stocks. X-Axis is beta. Y-axis is returns.

1929: Oct 28, Oct 29, Nov 06



Blue = ex-ante OLS beta predicted slope Red = loess realized smoothed fit ex-ante

1987: Oct 16, Oct 19

2008: Oct 7, 9, 15 + Dec 1

Part 2: Down-beta in Equities

- Can we improve (down-market) hedging?
- Estimate beta only on market down-days: by
 - Estimate beta on market up-days \hat{b}_{y}^{\dagger} , too.
- ▶ Is down-beta the relevant risk measure?
 - Roy (1952), Markowitz (1959), etc.
- Is there a premium for down-beta bearing?
- Most Prominent: Ang-Chen-Xing (2006)

Part 2: Down-beta in Equities

- Can we improve (down-market) hedging?
- ► Estimate beta only on market down-days: $\hat{b_y}$
 - Estimate beta on market up-days \hat{b}_{y}^{\dagger} , too.
- ▶ Is down-beta the relevant risk measure?
 - Roy (1952), Markowitz (1959), etc.
- Is there a premium for down-beta bearing?
- ► Most Prominent: Ang-Chen-Xing (2006)

ACX Innovations

- Earlier tests used monthly betas and formed pfios that destroyed variation in $\hat{\mathbf{b}}_{\mathbf{y}}$.
 - E.g., they may have sorted on by.
 - it is better to work with individual stocks.
- ACX sometimes use set of low-volatility stocks.
 - ► LV = Low-Volatility.
 - LV is ex-ante pre-identified. Good idea

ACX Innovations

- Earlier tests used monthly betas and formed pfios that destroyed variation in $\hat{\mathbf{b}}_{\mathbf{y}}$.
 - E.g., they may have sorted on by.
 - it is better to work with individual stocks.
- ACX sometimes use set of low-volatility stocks.
 - ► LV = Low-Volatility.
 - LV is ex-ante pre-identified. Good idea.

- Down-betas can forecast future down-betas.
- Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - ► And this is also **not** mechanical. ✓
- Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - ▶ (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

- Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - ► And this is also **not** mechanical. ✓
- 3. Some Down-Beta Future Return Evidence
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

- Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - ► And this is also **not** mechanical. ✓
- Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

- Down-betas can forecast future down-betas.
- 2. Simultaneous Down-Beta Return Association.
 - The realized down-beta correlates strongly with contemporaneous average returns.
 - ► And this is also **not** mechanical. ✓
- Some Down-Beta Future Return Evidence.
 - Down-betas can also predict quintile pfio returns.
 - (Plain, BkMkt+Sz+UMD adjusted)
- 4. Some significance in GMM on 25 FF pfios.

Still Relevant?

- ACX remains highly influential.
 - >200 Web of Science, >800 Google Scholar
 - Influence is not declining.
 - Will become "home run" paper.

- We critique ACX's inference, but
 - All ACX results are replicable.
 - There are no mistakes.
 - Our paper "only" revisits interpretation of evidence.

Descriptive Statistics

Low-Volatility (LV) Subsample:

		Mean	Sd	#days
All-days-Beta	b̂у	0.67	0.54	253
Down-Beta	\hat{b}_{y}^{-}	0.72	0.62	116
Up-Beta	\hat{b}_{y}^{+}	0.61	0.64	132
Abs(Down – Up)	$ \hat{\mathbf{b}}_{y}^{-} - \hat{\mathbf{b}}_{y}^{+} $	0.40	0.43	

Calendar Year Betas. 240k firm-years. LV 1927-2016.

1. Down-betas can forecast future down-betas

- Of course, we all agree that investors care not about past but about future down-beta.
- 17: down-beta can predict future down-beta:

$$\hat{b}_{v}^{-} \approx 0.56 \cdot \hat{b}_{v-1}^{-} + c + e, \qquad R^{2} \approx 30\%$$

¶7 is basically right!

 $N \approx 240$ k. i subscripts on $\hat{b_v}$ and e. Panel or FM. se is tiny. estimates.

- ▶ But if you care about $\hat{\mathbf{b}_{\mathbf{v}}}$, can you do better?
- All-days beta b

 y

 always has about twice as many days for estimation as down-beta b

 y

 1,
- ...and it has more X-axis support.
- ...or not.
- Empirically easy to investigate.
 - Not shown: our conclusions are **very** robust.

- ightharpoonup But if you care about $\hat{b_{V}}$, can you do better?
- ► All-days beta \hat{b}_{y-1} always has about twice as many days for estimation as down-beta \hat{b}_{y-1} ,
- ...and it has more X-axis support,
- ...or not.
- Empirically easy to investigate.
 - Not shown: our conclusions are very robust

- ▶ But if you care about $\hat{\mathbf{b}_{\mathbf{v}}}$, can you do better?
- ► All-days beta \hat{b}_{y-1} always has about twice as many days for estimation as down-beta \hat{b}_{y-1} ,
- ...and it has more X-axis support,
- ...or not.
- Empirically easy to investigate.
 - Not shown: our conclusions are very robust

- ▶ But if you care about $\hat{\mathbf{b}_{\mathbf{v}}}$, can you do better?
- ► All-days beta \hat{b}_{y-1} always has about twice as many days for estimation as down-beta \hat{b}_{y-1} ,
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,
- ...or not.
- Empirically easy to investigate.
 - Not shown: our conclusions are very robust

- ▶ But if you care about $\hat{\mathbf{b}_{\mathbf{v}}}$, can you do better?
- ► All-days beta \hat{b}_{y-1} always has about twice as many days for estimation as down-beta \hat{b}_{y-1} ,
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,
- ...or not.
- Empirically easy to investigate.
 - Not shown: our conclusions are very robust

- ▶ But if you care about $\hat{\mathbf{b}_{\mathbf{V}}}$, can you do better?
- ► All-days beta \hat{b}_{y-1} always has about twice as many days for estimation as down-beta \hat{b}_{y-1} ,
- ...and it has more X-axis support,
- ...but if by (process) is truly different, down-beta could predict itself better,
- ...or not.
- ► Empirically easy to investigate.
 - Not shown: our conclusions are **very** robust.

► ACX: Predict $\hat{\mathbf{b}_{V}}$ with lagged down-beta:

$$\hat{b_y} \approx \, \textbf{0.56} \cdot \hat{b_{y-1}} \quad + \, c + e, \qquad R^2 \!\!\approx\!\! 30\%$$

LW: Predict b

with lagged all-days betas:

$$\hat{b}_{y}^{-} \approx 0.72 \cdot \hat{b}_{y-1} + c + e \quad R^{2} \approx 40\%$$

$$\hat{b}_{y}^{-} \approx 0.74 \cdot \hat{b}_{y-1} -0.07 \cdot \hat{b}_{y-1}^{+} + 0.05 \cdot \hat{b}_{y-1}^{-} + c + e \quad R^{2} \approx 40\%$$

N pprox 240k. i subscripts on $\hat{\mathsf{b}_{\mathsf{v}}}$ and e. Panel or FM. se is tiny

► ACX: Predict $\hat{\mathbf{b}_{V}}$ with lagged down-beta:

$$\hat{b_y} \approx \text{ 0.56} \cdot \hat{b_{y-1}} + \text{c+e}, \qquad \text{R}^2 {\approx} 30\%$$

LW: Predict bv with lagged all-days betas:

$$\begin{split} \hat{b_y} &\approx & \textbf{0.72} \cdot \hat{b}_{y-1} + c + e & \text{R}^2 \! \approx \! \textbf{40\%} \\ \hat{b_y} &\approx & \textbf{0.74} \cdot \hat{b}_{y-1} \\ & -0.07 \cdot \hat{b}_{y-1}^{\dagger} + \textbf{0.05} \cdot \hat{b}_{y-1}^{-} + c + e & \text{R}^2 \! \approx \! \textbf{40\%} \end{split}$$

 $N \approx 240 k$. i subscripts on $\hat{b_v}$ and e. Panel or FM. se is tiny.

- ▶ If you care about the future down-beta, then forecast it with all-days beta, not with itself.
 - Or shrink $\hat{\mathbf{b}}_{V-1}^{-}$ away to almost nada.
- ...because

$$(\Delta_y \equiv) \hat{b}_y^{-} - \hat{b}_y^{+} \approx c + 0.087 \cdot (\hat{b}_{y-1}^{-} - \hat{b}_{y-1}^{+})$$

Most Δ_V is just estimation noise

(PS: It is this noisy realized betas that is also the one used in ACX part 1. It must have huge EIV. (Not shown:) some is even harder-to-estimate time-variation in Δ .)

- ▶ If you care about the future down-beta, then forecast it with all-days beta, not with itself.
 - ► Or shrink $\hat{\mathbf{b}}_{V-1}^{-}$ away to almost nada.

...because

$$(\Delta_y \equiv) \, \hat{b}_y^{-} - \hat{b}_y^{+} \approx c + 0.087 \cdot (\hat{b}_{y-1}^{-} - \hat{b}_{y-1}^{+})$$

Most Δ_V is just estimation noise.

(PS: It is this noisy realized betas that is also the one used in ACX part 1. It must have huge EIV. (Not shown:) some is even harder-to-estimate time-variation in Δ .)

Above was down-beta prediction.

Below is stock-return explanation/prediction.

2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!
- But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.
 - At least, use many years [-4 to +4 = no results].

2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!
- But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.
 - At least, use many years [-4 to +4 = no results]

2. Simultan Down-Beta vs Return

Philosophical Points, Ex-Post Ω

- First half of ACX uses ex-post simultaneous down-betas to explain rates of return.
- It is defensible that representative investors know stocks' true down-betas better than us.
 - But must be very smart aggregators for pricing!
- But it seems implausible that they know the realized down-betas (from the very same returns being predicted!), and/or any other single year.
 - ► At least, use many years [-4 to +4 = no results].

T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{yi} + \gamma_2 \cdot \hat{\mathbf{b}}_{yi}^{\dagger} + ...$

$$\mathbf{r}_{yi} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{yi} + \gamma_2 \cdot \hat{\mathbf{b}}_{yi}^{\dagger} + \dots$$

Beta	ACX RFS Simult		
ĥ.	0.062	0.088	
(T)	(+6.0)	(+6.1)	
ĥ⁺	0.020	0.002	
(T)	+2.3	+0.2	
Sample	ACX	ACX	
	1963	3-2001	

(Strong positive for b only if betas are estimated simultaneous (or one future year). b is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{yi} + \gamma_2 \cdot \hat{\mathbf{b}}_{yi}^{\dagger} + ...$

$$\mathbf{r}_{\mathbf{y}\mathbf{i}} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{\mathbf{y}\mathbf{i}}^{-1} + \gamma_2 \cdot \hat{\mathbf{b}}_{\mathbf{y}\mathbf{i}}^{+1} + \dots$$

Beta	ACX RFS Simult	Replic ans \hat{b}_{y}	Ex-Ante \hat{b}_{y-1}
ĥ_	0.062	0.088	-0.009
(T)	(+6.0)	(+6.1)	(-1.6)
ĥ⁺	0.020	0.002	-0.005
(T)	+2.3	+0.2	(-0.8)
Sample	ACX	ACX	ACX
	1963	3-2001	1963-01

(Strong positive for b only if betas are estimated simultaneous (or one future year). b is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

T2: Fama-Macbeth, Simul Realized $r_{yi} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{yi} + \gamma_2 \cdot \hat{\mathbf{b}}_{yi}^{\dagger} + ...$

$$\mathbf{r}_{yi} = \gamma_0 + \gamma_1 \cdot \hat{\mathbf{b}}_{yi} + \gamma_2 \cdot \hat{\mathbf{b}}_{yi} + \dots$$

	ACX RFS	Replic			
Beta	Simultans b̂ _y		Ex-Ante \hat{b}_{y-1}		
ĥ_	0.062	0.088	-0.009	-0.022	
(T)	(+6.0)	(+6.1)	(-1.6)	(-3.5)	
ĥ⁺	0.020	0.002	-0.005	-0.020	
(T)	+2.3	+0.2	(-0.8)	(-3.6)	
Sample	ACX	ACX	ACX	Extd	
	1963-2001		1963-01	1927-16	

(Strong positive for b only if betas are estimated simultaneous (or one future year). b is not positive in longer windows around returns. Not shown, 90% of power is from all-days beta, too. Controls were included, but are not reported. About 500k obs/2.2m obs.)

Fama-Macbeth Gammas on

- ► 63-01: Realized down-betas $\hat{\mathbf{b_v}} \stackrel{+}{\longrightarrow}$ returns. (0.08)
- ► 63-01: "Placebo" Ex-post (**plain**) betas $\hat{b}_y \stackrel{+}{\longrightarrow} returns$. (0.18)
- ► 63-01: Ex-post competing effect: $\hat{b}_y = 0.21.*** \quad \hat{b}_y = 0.03.** \quad \hat{b}_y^* = -0.04$
- ▶ 63-01: **Ex-ante** any betas: $\xrightarrow{-}$ returns.
- ► 63-01: Windowed 4yr betas: returns.
- **▶ 1963-2016**: ≈ 63-01.

Defend Ex-Post Realized Beta?

- Fama: all AP tests are eqbm model and Ω.
 - Judgment call: ex-post info seems better in IV regressions, agent-specific consumption, etc.
- Ex-post info could resolve many pricing mysteries.
- Most important, FM all-days beta → stock returns:

```
with \underline{\text{FM Gamma}} \underline{\text{(T-stat)}} ... Ex-Ante Betas -0.3\%/\text{year} \underline{\text{(-0.22)}} ... Contemp Betas +8.4\%/\text{year} \underline{\text{(+3.84)}}
```

and 8.4% is even underestimated due to EIV. See original FM multi-sort, etc.

Above was ACX ex-post down-beta evidence (\$\mathbb{T}2\mathbb{T}5\).

Below is ACX ex-ante down-beta evidence (₹8-₹10).

... and GMM (\$16)

3. Down-Beta Future Return Evidence

ACX Specification:

- Quintile test pfios based on down-betas.
 - ▶ Short: Downbeta \approx 0.2.
 - ▶ Long: Downbeta \approx 1.9.
- Zero-Investment Portfolio Tests
 - ▶ Jensen-Black-Scholes (1972), Fama-French (1993).
- non-LV and LV sets.

ACX Tables 8-10

Lagged beta predicts future monthly stock returns:

(not reported) \hat{b}_{y-1} (not reported) \hat{b}_{y}		1.89 1.38	
Quintile:	Low \hat{b}_{y-1}	High \hat{b}_{y-1}^{-}	∆T-stat
T8: Net of Risk-free	+0.6%	+0.7%	(0.6)
T9: LV Net of Rf T10: LV Size/B-M Adj	+0.6% -0.3%	+0.9% +0.2%	(2.3) (3.3)

(LV= Low VItlty. EW Quintiles. Excess= TB. 1963-2001)

Our Near Replication

 \hat{b}_{V-1} -Spread Zero Pfio. Time-Series Regs. %/mo.

ACX Alpha 0.11 0.23 0.44 (ACX T-stat) (0.60) (2.31) (3.36) SMB HML Sample: All LV LV Replication 0.11 0.30 0.50 (T-stat) (0.60) (1.85) (3.37)				
(ACX T-stat) (0.60) (2.31) (3.36) SMB HML Sample: All LV LV Replication 0.11 0.30 0.50		₹8	₹9	য়10
Sample: All LV LV Replication 0.11 0.30 0.50	•			• • • •
Replication 0.11 0.30 0.50				•
	Sample:	All	LV	LV
	•			

(Small differences in LV classification and SMB/HML adjustments.)

Placebo—Plain "All-Days" Beta

6√-Spread Zero Pfio. Time-Series Regs. %/mo.

Similar to:	₹8	₹19	₹10
ACX Alpha		n/a .	
(ACX T-stat)		n/a .	
			SMB
			HML
Sample		LV	LV
LW Alpha	0.03	0.20	0.45
(T-stat)	(0.15)	(1.08)	(2.63)

Placebo is a little worse, but really quite similar!

So, what, if anything, is wrong here?

Average XMKT/mo in ACX sample: 0.54%/mo:

 $\Rightarrow \hat{b}_{V} \cdot XMKT \approx 0.77 \cdot 0.54\% \approx 0.42\%/mc$

So, what, if anything, is wrong here?

Average XMKT/mo in ACX sample: 0.54%/mo:

$$\Rightarrow \hat{b}_{V} \cdot XMKT \approx 0.77 \cdot 0.54\% \approx 0.42\%/mo$$

Time-Series (FF) Regs, \hat{b}_{y-1} -Sort

	∛8	₹9	∛10	N/A
ACX Alpha	0.11	0.23	0.44	n/a
(T-stat)	(0.60)	(2.31)	(3.36)	n/a
				XMKT
			SMB	SMB
			HML	HML
Sample		LV	LV	LV
LW Alpha	0.11	0.30	0.50	0.04
T-stat	(0.60)	(1.85)	(3.37)	(0.31)
·	•	•	•	

Is Exposure Alpha?

- Go long stocks with high X exposure Go short stocks with low X exposure
 - X can be a zero-investment currency pfio, or commodity pfio, or whatever.
- ▶ Look at a sample period in which $\bar{X} \gg 0$.
- ⇒ Portfolio should have pos avg rates of return.
- Average statement (not tautology).
- ACX looked at high-(down-)beta portfolios in a time of good stock-market performance.

Does FM Slope Imply FF Alpha?

- The 1-Factor CAPM model gives a prescription for how much pfio should have gone up.
 - ► FM Slope=Necessary, but not sufficient for FF Alpha.
- ► In ACX, high-(down) beta pfios had higher rates of return only w/o XMKT control.
- ► High-beta stocks ↑ more when/because market ↑.
- ...as they should have, given that they had positive exposures and the market went up,
- ...but high (down-)beta stocks did not even go up enough to "break even" in a "positive alpha" way.

What About Ex-Post Downbeta?

(ACX Fama-Macbeth Focus. Needed for Strong Positive.)

- We already know:
 - ▶ Down-betas ≈ Plain all-days betas.
 - From 1963-01, $\hat{b}_y \stackrel{+}{\longrightarrow} r$ was good.
 - ► Marginal FM $\hat{\mathbf{b}_{\mathbf{v}}} \rightarrow \mathbf{r}$ was small 0.03.
 - Downbeta should be a little more positive in FF regs.
- So, was the marginal realized simultaneous (ex-post) by predicted return even strong enough just to meet the 1-factor benchmark?

What About **Ex-Post** Downbeta?

	₹8	₹9	য়10	N/A
ACX Alpha (T-stat)		r	_	
			SMB HML	XMKT SMB HML
Sample		LV	LV	LV
LW Alpha T-stat		0.25 (1.33)	0.45 (2.67)	-0.89 (-0.78)

FM Reassessment

- Yes, there was a positive FM association between ex-post down-betas and rates of return;
- ...but it was not enough merely to beat the 1-factor target benchmark.

But it's 2016 now. What is the best inference today?

FM Reassessment

- Yes, there was a positive FM association between ex-post down-betas and rates of return;
- ...but it was not enough merely to beat the 1-factor target benchmark.

But it's 2016 now. What is the best inference today?

And in 2016? (Ex-ante \hat{b}_y)

Spec	∛8	₹9	∛10	N/A
ACX Alpha (T-stat)				
				XMKT
			SMB	SMB
			HML	HML
Sample		LV	LV	LV
LW Alpha	-0.28	-0.02	-0.02	-0.44
T-stat (-1.32)	(-0.11)	(-0.12)	(-4.27)

Time-Series (FF) Regs, \hat{b}_{y-1}

From 1963-2016:

- Higher b

 y-1 stocks did not even have higher average rates of return;
- ...but XMKT continued to be very positive;
- ► ...thus 1-F alpha of \hat{b}_{y-1} was not just not positive, it was negative;

Did Down-Beta 6 Give Pos Alpha?

Relative to what?

- Risk-Neutral Model?A: Yes, as of 2001A: No, as of 2016.
- CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

Did Down-Beta 6 Give Pos Alpha?

Relative to what?

- Risk-Neutral Model? A: Yes, as of 2001. A: No, as of 2016.
- ► CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

Did Down-Beta 6 Give Pos Alpha?

Relative to what?

Risk-Neutral Model?

A: Yes, as of 2001.

A: No, as of 2016.

- CAPM? A: Never.
- Fama-French 3F Model? A: Never.
- ► (Fama-French 5F+UMD Model? A: Never.)
- down-beta roughly similar to plain beta, never offering extra.

Important Warning

- To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

$$\hat{b_y}^{-} \hat{b}_y$$

- ► ...unless you want to learn whether \hat{b}_y has a less negative relation with future stock returns than \hat{b}_y
- ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
- ...which is sort of the case in the ACX GMM spec, too.

Important Warning

- To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

$$\hat{b_y} - \hat{b}_y$$

- ...unless you want to learn whether $\hat{b_y}$ has a less negative relation with future stock returns than $\hat{b_y}$!
- ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
- ...which is sort of the case in the ACX GMM spec, too.

Important Warning

- To test a beta-risk-reward argument,
- do not form zero-investment test portfolio on the basis of difference of

$$\hat{b_y} - \hat{b}_y$$

- ...unless you want to learn whether $\hat{b_y}$ has a less negative relation with future stock returns than $\hat{b_y}$!
- ...which would be sort of silly as an AP test whether investors need comp for (down-)beta risk
- ...which is sort of the case in the ACX GMM spec, too.

4. GMM on 25 FF pfios (F6)

- GMM is not a great expertise of our's.
- Down-beta helps explain 25 FF portfolio returns.
 - remarkable, given motivation about pfio info destruction.
- ...but with the wrong sign ?!? b_m is coef on r_m.

...and see warning on prev page.

4. GMM on 25 FF pfios (F6)

- GMM is not a great expertise of our's.
- Down-beta helps explain 25 FF portfolio returns.
 - remarkable, given motivation about pfio info destruction.
- ...but with the wrong sign ?!? b_m is coef on r_m.

	а	b _m	b _m -
्रि6 Spec II	1.35	-17.73	22.84
$E(I(x) \cdot r) = 0$	[8.70]	[3.03]	[2.16]

...and see warning on prev page.

We need to learn about down-beta, not win an argument.

We need to learn what we have missed.

We could not get a hold of ACX, so apologies for not considering and investigating more counterarguments.

Hopefully, we will soon improve paper with Andrew's comments. We want to end up with a better synthesis than his thesis and our antithesis.

...and of course, the **Critical Finance Review** is very interested in this kind of exchange between critique and authors.

We need to learn about down-beta, not win an argument.

We need to learn what we have missed.

We could not get a hold of ACX, so apologies for not considering and investigating more counterarguments.

Hopefully, we will soon improve paper with Andrew's comments. We want to end up with a better synthesis than his thesis and our antithesis.

...and of course, the **Critical Finance Review** is very interested in this kind of exchange between critique and authors.

Part 3: Down-Beta in Asset Classes

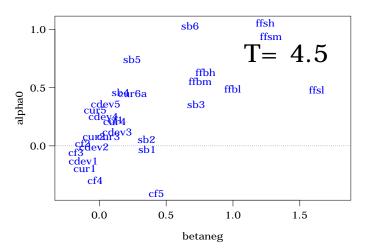
- ► Lettau-Maggiori-Weber (2014).
- Uses full-sample betas, not realized betas.
- Like every paper, makes some choices. All ok.
- Common misconception, already nicely noted in LMW: Currencies are mostly just completely unrelated investments...like cash.

Ex-Ante vs Full-Window Betas

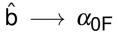
- Full-Window betas may be better than ex-ante,
- ...esp because we have low power on down-market classification.
- Ex-Ante Down-Beta Inference in FM:
 - some results become weaker (a few become stronger).
 - LMW's results do not generally reverse, unlike ACX's.

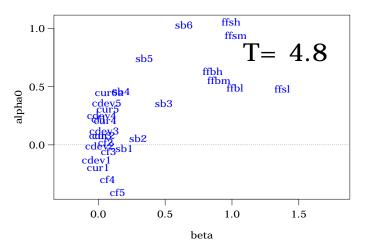
(sovereign bonds may become more interesting with more data.)

Ex-Ante vs Full-Window Betas

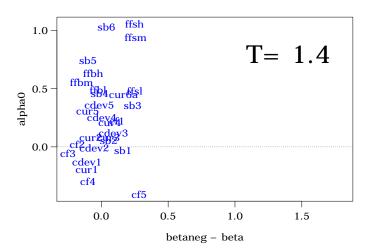

- Full-Window betas may be better than ex-ante,
- ...esp because we have low power on down-market classification.
- Ex-Ante Down-Beta Inference in FM:
 - some results become weaker (a few become stronger).
 - ► LMW's results do not generally reverse, unlike ACX's.

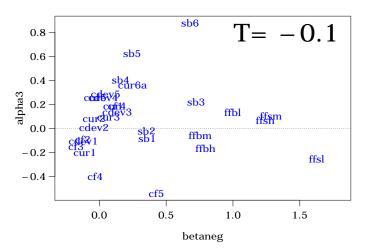
(sovereign bonds may become more interesting with more data.)


Can CAPM or FFM explain Alphas? Is Downbeta helpful?

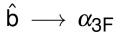

		All-Days Beta	Diff- erence
Rf	$\hat{ extbf{b}}^{ extbf{T}} ightarrow lpha_{0 extsf{F}}$	$\hat{b} \to \alpha_{0F}$	$\hat{\mathbf{b}}_{\mathbf{y}}^{\mathbf{T}}$ $-\hat{\mathbf{b}} ightarrow lpha_{\mathbf{0F}}$
CAPM	$\hat{b} \rightarrow \alpha_{1F}$	$\hat{b} o lpha_{1F}$	$\hat{\mathbf{b}_{y}}$ - $\hat{\mathbf{b}}$ \rightarrow α_{1F}
FFM	$\hat{\mathbf{b}}$ $ ightarrow lpha_{3F}$	$\hat{b} \to \alpha_{3F}$	$\hat{\mathbf{b}_{V}}\mathbf{-}\hat{\mathbf{b}} ightarrowlpha_{3F}$

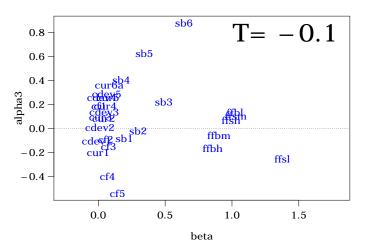
$\hat{b}^{-} \longrightarrow \alpha_{0F}$


Positive between downbeta and risk-free adj returns.

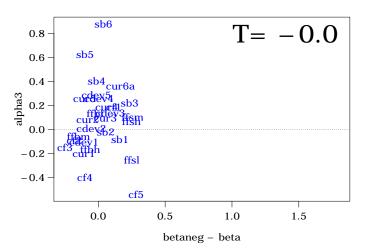

Positive between plain beta and risk-free adj returns.

$\hat{\mathsf{b}}^{\mathsf{T}} - \hat{\mathsf{b}} \, \longrightarrow \, lpha_{\mathsf{0F}}$




Positive between **delta beta** and risk-free adj returns.

$\hat{b}^{\mathsf{T}} \longrightarrow \alpha_{\mathsf{3F}}$


No association between down-beta and FFM-adj.

No association between plain beta and FFM-adj.

No association between beta-diff and FFM-adj.

Summary on Beta Prediction

- Plain all-days daily-return betas work great for down-markets, too.
- Est'd ex-ante down-betas are useless:
 - Even if you care only about down-beta
 - You are still better off using all-days daily returns.

Summary on Return Prediction

Despite positive Fama-Macbeth coefficients for ex-post down-betas associating with stock returns:

- For many investment strategies, differences between FM and FF tests are modest
 - but not in near-beta-related strategies,
 - where strategy has to beat market premium ER_m-r_f.
- Down-beta-sorted pfios, ex-ante or ex-post, have zero or negative CAPM/FFM alphas.
 - $ightharpoonup \hat{b}_{y}$ are primarily just (noisier) proxies for \hat{b}_{y} .
 - \triangleright $\hat{b_v}$ do not help resolve asset-pricing puzzles.
 - ▶ Returns were not unusual on down-beta dimension.