Ratio of Changes:

Paper https://dx.doi.org/10.2139/ssrn.3599280

Presentation

https://www.ivo-welch.info/research/presentations/chapman2021.pdf

Ivo Welch

December 6, 2021

What To Remember

- interest in corporate finance interest is x↔y in panels, but
 - variables have trends, so we must work in differences.
 - firms are vastly different in size, so we must normalize.
- canonical common panel-regression specification:

$$\frac{y_{i,t}}{D_{i,t}} = \beta \times \frac{x_{i,t}}{D_{i,t}} + FE_i + controls_{i,t} + e_{i,t}$$

What To Remember

$$\frac{y_{i,t}}{D_{i,t}} = \beta \times \frac{x_{i,t}}{D_{i,t}} + FE_i + e_{i,t}$$

is roughly the same as:

$$\left(\frac{y_{i,t}}{D_{i,t}} - \frac{y_{i,t-1}}{D_{i,t-1}}\right) = \beta \times \left(\frac{x_{i,t}}{D_{i,t}} - \frac{x_{i,t-1}}{D_{i,t-1}}\right) + e_{i,t}$$

• reduce ΔD noise, focus on x and y, avoid spurious correlation:

$$\left(\frac{y_{i,t}-y_{i,t-1}}{D_{i,t-1}}\right) = \beta \times \left(\frac{x_{i,t}-x_{i,t-1}}{D_{i,t-1}}\right) + e_{i,t}$$

 "stock-return" like definition is not a bad idea for <u>any</u> corp var. Does x or D matter? (Few theories are so specific on scalar D.)

Problem

- canonical specification is used in many corpfin papers:
 - Fazzari, Hubbard, Petersen (2000)
 - Baker, Wurgler, Stein (2003)
 - Almeida, Campbell, Weisbach (2004)
 - Rauh (2006)
 - and many others.

influence of ΔD on β depends on many aspects, such as how Δx and Δy line up with ΔD . (smaller firms are different.)

- specification is canonical and rarely raises an eyebrow
- ...but it can bite, as it does in influential chaney, sraer, thesmar (AER 2012), to be explained.

Simplified Chaney, Sraer, Thesmar (AER 2012)

- → Does an increase in collateral induce more investment?
- \rightarrow Uses <u>common</u> corporate-finance specification:

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = \beta \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

- → capex (capital expenditures),
- → real-estate (dollar value, mostly headquarter),
- → ppe (property plant and equipment)
 - → really just a scale adjustment
 - → (titled) interest is about real-estate and capex
- → CST add fixed effects (FE) for time and other controls.

! Positive Coefficient Interpretation!

<u>Title:</u> How real-estate <u>shocks</u> affect corporate investment

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.07 \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

- → CST emphasize coefficient magnitude
 - → too much? a one-time shock on real-estate value stock will have a permanent effect on capex flow. Is the payoff on capex immediate?
- → CST emphasize shock aspect
 - → despite <u>simul</u>-timing.
- \rightarrow T around 20 (3,000 firms, 15 years).

Placebo Tests – Time Shock (Near)

→ Actual:

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.07 \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

 $\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} = 0.08 \times \frac{\mathsf{realestate}(\mathsf{i},\mathsf{t}\textcolor{red}{\textbf{+4}})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}\textcolor{red}{\textbf{+3}})} \ + \mathsf{FE}(\mathsf{i}) + \ldots + \mathsf{e}$

where $t + \cdot$ is next years, firm held constant.

- → Real-estate collateral affects past capital expenditures?!
- → Not a shock.

(PS: I always love time-falsification placebos when effect is supposed to be an event or shock.)

Placebo Tests – Similar Firm (Near Size)

→ Actual:

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.07 \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

$$\frac{\mathsf{capex}(\mathfrak{i},\mathsf{t})}{\mathsf{ppe}(\mathfrak{i},\mathsf{t}-1)} = 0.03 \times \frac{\mathsf{realestate}(\mathsf{j},\mathsf{t})}{\mathsf{ppe}(\mathfrak{i},\mathsf{t}-1)} \ + \mathsf{FE}(\mathfrak{i}) + \ldots + \mathsf{e}$$

where j is next-5-largest firm at inception, firm held constant.

- → Real-estate investment affects capital expenditures of similar-sized firms?! (No industry or real-estate or other control.)
- → Not a firm-specific but a size-related phenomenon.

Placebo Tests - Random Firm Year

→ Actual:

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.07 \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.004 \times \frac{\text{realestate}(j,s)}{\text{ppe}(j,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

where j, s is random firm-year.

→ Better be zero now. The variable on the RHS is nearly completely random here. Denominator could equally compress or expand numerators.

What About The Constant 1.0?

$$\frac{\text{capex}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} = 0.07 \times \frac{\text{realestate}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} \ + \text{FE}(\textbf{i}) + \ldots + \text{e}$$

More 1.0 \Rightarrow More Investment?

$$\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} = 0.13 \times \frac{\textcolor{red}{\mathbf{1.0}}}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} \ + \mathsf{FE}(\mathsf{i}) + \ldots + \mathsf{e}$$

More Real-Estate Collateral \Rightarrow More 1.0?

$$\frac{\textbf{1.0}}{\text{ppe}(\textbf{i},\textbf{t}-1)} = 0.20 \times \frac{\text{realestate}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} \ + \text{FE}(\textbf{i}) + \ldots + \text{e}$$

- → Somehow real-estate and capex each increased (heterogeneously) in non-(FE)-controlled way.
 - → Recipe for spurious association
 - → PS: Coefs reflect T-stats and magnitudes fairly.

Chaney, Sraer, Thesmar (2020) Response

$$\frac{\text{capex}(i,t)}{\text{ppe}(i,t-1)} = 0.07 \times \frac{\text{realestate}(i,t)}{\text{ppe}(i,t-1)} \ + \text{FE}(i) + \ldots + \text{e}$$

$$\frac{\text{capex}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} = 0.13 \times \frac{1.0}{\text{ppe}(\textbf{i},\textbf{t}-1)} \ + \text{FE}(\textbf{i}) + \ldots + \text{e}$$

→ Let's "split" the difference?

$$\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} = 0.05 \times \frac{\mathsf{realestate}}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} + 0.12 \times \frac{1.0}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} + \dots$$

- → CST: Problem is now under control: 0.05 coef is still positive.
- → Me: Specification is still bad ("trended"): see 0.12 coef on constant.

Is Specification Under Control Now?

$$\frac{\text{capex}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} = 0.05 \times \frac{\text{realestate}}{\text{ppe}(\textbf{i},\textbf{t}-1)} + 0.12 \times \frac{1.0}{\text{ppe}(\textbf{i},\textbf{t}-1)} \ + \dots$$

- → Placebo
 - → t+3 Real Estate: 0.062 on real-estate/ppe (not 0.078)
 - → j+3 Real Estate: 0.018 on real-estate/ppe (not 0.027)
- → Regression still contains uncontrolled denominator effects:

Is Specification Under Control Now?

$$\frac{\text{capex}(\textbf{i},\textbf{t})}{\text{ppe}(\textbf{i},\textbf{t}-1)} = 0.05 \times \frac{\text{realestate}}{\text{ppe}(\textbf{i},\textbf{t}-1)} + 0.12 \times \frac{1.0}{\text{ppe}(\textbf{i},\textbf{t}-1)} \ + \dots$$

→ Placebo

- → t+3 Real Estate: 0.062 on real-estate/ppe (not 0.078)
- → j+3 Real Estate: 0.018 on real-estate/ppe (not 0.027)
- → Regression still contains uncontrolled denominator effects:
- → The specification wrestles (badly) with shared variation in 1/ppe on both X and Y.
- → The specification is not a good solution for the problem at hand.
- → Not shown: adding log(1/P) makes RE reverse sign

Specification

There is The Better Alternative

- → Remove time-variation in denominator;
- → and thus remove the problem, once and for all.

Translate Fixed Effects to Changes

→ Familiar Tranformation (see [Angrist-Pischke, etc.] first slide):

From ratios and fixed effects (R + FE):

$$\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} = \beta \times \frac{\mathsf{realestate}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)} \ + \mathsf{FE}(\mathsf{i}) + \ldots + \mathsf{e}$$

to changes of ratios (CoR):

$$\Delta_t \Big[\frac{\mathsf{capex}(\mathfrak{i}, \mathsf{t})}{\mathsf{ppe}(\mathfrak{i}, \mathsf{t} - 1)} \Big] = \beta \times \Delta_t \Big[\frac{\mathsf{realestate}(\mathfrak{i}, \mathsf{t})}{\mathsf{ppe}(\mathfrak{i}, \mathsf{t} - 1)} \Big] + \ldots + \mathsf{e}$$

- → Identical in two periods.
- → Similar in more periods.

Care About Numerator?

 \rightarrow Changes of Ratios (CoR, $\Delta(v/z)$):

$$\begin{split} & \left[\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\right] - \left[\frac{\mathsf{capex}(\mathsf{i},\mathsf{t}-1)}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-\frac{\mathbf{Z}}{\mathbf{Z}})}\right] \\ & = \beta \times \left\{\left[\frac{\mathsf{realestate}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\right] - \left[\frac{\mathsf{realestate}(\mathsf{i},\mathsf{t}-1)}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-\frac{\mathbf{Z}}{\mathbf{Z}})}\right]\right\} + \ldots + e \end{split}$$

 \rightarrow vs. Ratios of Changes (RoC, $(\Delta v)/z$):

$$\begin{split} & \left[\frac{\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\right] - \left[\frac{\mathsf{capex}(\mathsf{i},\mathsf{t}-1)}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-\frac{\mathbf{1}}{\mathbf{1}})}\right] \\ & = \beta \times \left\{\left[\frac{\mathsf{realestate}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\right] - \left[\frac{\mathsf{realestate}(\mathsf{i},\mathsf{t}-1)}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-\frac{\mathbf{1}}{\mathbf{1}})}\right]\right\} + \ldots + \mathsf{e} \end{split}$$

- → By RoC, I mean ratio with a change in the numerator, not in the denominator.
- → What theory about numerators would not allow this?

Ratios of Changes

→ RoC:

$$\Big[\frac{\Delta_{\mathsf{t}}\mathsf{capex}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\Big] = \beta \times \Big[\frac{\Delta_{\mathsf{t}}\mathsf{realestate}(\mathsf{i},\mathsf{t})}{\mathsf{ppe}(\mathsf{i},\mathsf{t}-1)}\Big] + \ldots + \mathsf{e}$$

- → Denominator now does only what you need it for:
 - → scale control across different firms.
- → All time-variation in ppe is removed by specification.
 - \rightarrow similar to rescaling the lagged variable by ppe(i, t 2)/ppe(i, t 1).
 - → Not revolutionary:

we use "rate of returns":
$$(P_t-P_{t-1})/P_{t-1},$$
 not "differences in price-appreciations":
$$P_t/P_{t-1}-P_{t-1}/P_{t-2}.$$

→ Some cases where meaning could change; try ppi(t) as denom? discuss both cases? see where results are sensitive. note: doubling still works, because x and y double. D is just heteroscedasticity scalar now.

Ratio of Changes (RoC) Variables

- → This is about variables, not about regressions.
 - → Doesn't need to be in both X and Y.
 - → CoR in either X or in Y can create trouble, too.
- → RoC and Cor variables can be very different:
 - → ...obviously only when the denominator changes greatly.
 - → Example: num=(19.9,20.0); denom=(100,200).
 - → RoC = 0.2 0.1 = +0.1; vs.
 - \rightarrow CoR = -0.1/100 = $\frac{-0.001}{}$
- → CST
 - \rightarrow correlation of CoR Δ (v/ppe) with RoC (Δ v)/ppe is low,
 - \rightarrow even the sign of CoR Δ (v/ppe) vs RoC (Δ v)/ppe changes often,
 - → and disproportionately more for growing, volatile (small, non-RE).

Back to CST 2012

→ Denominator-neutral RoC Regression:

$$\Big[\frac{\Delta_{t} \text{capex}(i,t)}{\text{ppe}(i,t-1)}\Big] = -0.02 \times \Big[\frac{\Delta_{t} \text{realestate}(i,t)}{\text{ppe}(i,t-1)}\Big] + \ldots + e$$

→ Not shown: bad CoR reg has positive coef, just like CST F + R

→ Not Shown:

- → In CST, one regression specification in which a different independent variable (REisPos × repi) is not ppe normalized;
- → but with R + FE continuing for the dependent variable (capex/lagppe), the positive CoR coefficient turns negative in the RoC version, too.
- → Here spurious time corr problem is not mechanical, but empirical.
- → Why? The reason are differential trends of small vs large firms.
- → Same results when Great (Real-Estate) Recession data is added.

Simple To Remember

- → If you care about the numerator in a ratio, and
- → you use the denominator primarily as a scale adjustment, and
- → firms are different enough to require mean adjustments;

Simple To Remember

- → If you care about the numerator in a ratio, and
- → you use the denominator primarily as a scale adjustment, and
- → firms are different enough to require mean adjustments;
- → then do not use a fixed-effects level regression!
- → Use an RoC specification instead!

Simpler To Remember

Fixed-Effect Regressions With Ratio Variables are Dangerous

and there is an easy and safer alternative to CoR, RoC.

So What Went Wrong in CST?

→ Usually, I do not speculate on motives of authors,

... but

- → CST are top-notch empiricists,
- → ... and I believe the answer is quite innocuous.

So What Went Wrong in CST?

→ Usually, I do not speculate on motives of authors,

... but

- → CST are top-notch empiricists,
- → ... and I believe the answer is quite innocuous.
- → I am guessing that CST just used the canonical "standard" specification in the literature, without giving it a second thought.

So What Went Wrong in CST?

→ Usually, I do not speculate on motives of authors,

... but

- → CST are top-notch empiricists,
- → ... and I believe the answer is quite innocuous.
- → I am guessing that CST just used the canonical "standard" specification in the literature, without giving it a second thought.
- → ...and they are probably not the only paper whose results come from scale effects, but I do not know this for sure.

Is Critique Unfair?

I believe that the profession needs to routinely independently and skeptically assess (and iterate over) every paper.

- → Most CorpFin papers have never been reexamined (incl my own).
- → It sucks that critiques pick almost randomly on just some papers.
- → It sucks that it had to be me who had to be the bad guy. Not fun.

Take the <u>Critical Finance Review</u> seriously!

