Long-Term Investments

Asset-Class Based Capital Budgeting

Taiwan Securities and Financial Markets Conference

Yaron Levi and Ivo Welch

December 2014

Financial Markets Conference

- Not Big but Long Data
- Our paper is 2/3 CF and 1/3 AP.
- My presentation is the reverse.

but it's generic enough to be of interest to everyone.

Financial Markets Conference

- Not Big but Long Data
- Our paper is 2/3 CF and 1/3 AP.
- My presentation is the reverse.

but it's generic enough to be of interest to everyone.

AP Part

Long-Term Risky vs. Safe Investments

- Long-term ≠ illiquid.
- Long-term = long-distant payoffs.

Common Risk Premium Defn in AP

"Long-Horizon Stock Payoffs" compared to

"Short-Horizon Risk-Free Bills"

(not my interest)

confounds maturity premia with risk premia.

Long-Term Risk Premium Definition

"Long-Horizon Stock Payoffs" compared to

"Long-Horizon Risk-Free Bills"

(my interest)

think, holding maturity "more" constant.

AP Part

What is the expected rate of return demanded of stocks over bonds?

- The benchmark are not short bills but long bonds.
- No rebalancing. Buy-and-hold. ⇒ Geometric mean.

Why?

- Because I am (also) interested in CF.
- Because this is what investors (can) demand for safe projects with equal far-off payout.
- Because our models add a risk-premium to equivalent risk-free rate.
- Because the NPV/IRR natural benchmark (required cost of capital) for constructing a factory with long-term expected payoffs is long-term safe payoffs.

Differences

- Use a longer-term risk-free bond rate.
 - Talk about differences and consistency.
- Break out time- from default-premium.
 - Even default-free assets have a time-premium.
 - Today: 3% Bond-Bill Yield Difference
 - Not exactly comparable: Want rolled-over short-term assets, not instant standing.
- It is critical to use geometric means.
 - ▶ we don't want $(+101\%, -100\%) \Rightarrow -100\%$ to count as better than (+0%, -0%).

(Free) Historical Data

http://ivo-welch.info/professional/goyal-welch/

- Annual Data
- Right now, about 1857-2013. Planned: 1820s-now,
- Convenient csv file
- Will need more curating...not final.

Long Data

- 1802- : Inflation
- 1832- : Short Default-Safe Rates
- 1802- : Long Default-Safe Rates
- 1871- : Long AAA-like Rates
- 1802- : (Long) Stock Returns

and not everything turns out like Ibbotson 1926-

Long Data

- 1802- : Inflation
- 1832- : Short Default-Safe Rates
- 1802- : Long Default-Safe Rates
- 1871- : Long AAA-like Rates
- 1802- : (Long) Stock Returns

and not everything turns out like Ibbotson 1926-

Differences and Internal Consistency

Bonds vs. Bills.

Close-To-Tautotologies

- T-bills and T-bonds are both default-free fixed-income securities.
- On average over the very very long run:
 - Default-free fixed-income securities will return what they promise.
 - If T-bonds have an average yield spread of 2% over T-bills, then they will earn 2% more.

Bonds over Bills

	Yld	Ret
2000-2013	3.6	4.8
1970-2013	3.0	4.0
1926-2013	2.5	2.5
1870-2013	1.9	2.2

- Interest rates declined from 2000-13.
- ▶ Today, the T-bond yield spread is not unusually small (3%).

Internal Consistency

- ▶ Historical data should not allow you to believe short-term equity premium is 5% and long-term equity premium is 4%.
- Historical data should not allow you to believe short-term equity premium is 5% and long-term equity premium is 0%.
- ▶ If you believe short-term equity premium is 5%, then you should believe long-term equity premium is 2-3%.
- ▶ If you believe short-term equity premium is 3%, then you should believe long-term equity premium is 0-1%.

Internal Consistency

- Historical data should not allow you to believe short-term equity premium is 5% and long-term equity premium is 4%.
- Historical data should not allow you to believe short-term equity premium is 5% and long-term equity premium is 0%.
- ▶ If you believe short-term equity premium is 5%, then you should believe long-term equity premium is 2-3%.
- ▶ If you believe short-term equity premium is 3%, then you should believe long-term equity premium is 0-1%.

Quiz

- Our first wp draft ended in 2012.
- What was the 2013 rate of return on stocks?

32%

What was the 2013 rate of return on stocks over bonds?

$$32\% - (-7\%) \approx 40\%$$

This has influence even over decades!

Quiz

- Our first wp draft ended in 2012.
- What was the 2013 rate of return on stocks?

32%

What was the 2013 rate of return on stocks over bonds?

$$32\% - (-7\%) \approx 40\%$$

This has influence even over decades!

Quiz

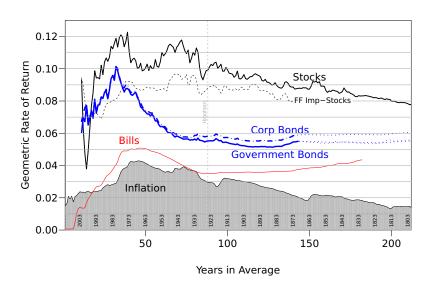
- Our first wp draft ended in 2012.
- What was the 2013 rate of return on stocks?

What was the 2013 rate of return on stocks over bonds?

$$32\% - (-7\%) \approx 40\%$$

This has influence even over decades!

Agree to Disagree?


- Ref A: by ignoring 2013, you cheated.
- ▶ Ref A: equity premium from 1926 was 6.5%.
- ▶ Ref B: short eqprem from 1970 was 4-5%.
- Ref B: long eqprem from 1970 was 2%.
- How can anyone reconcile referees?

Agree to Disagree?

- Ref A: by ignoring 2013, you cheated.
- ▶ Ref A: equity premium from 1926 was 6.5%.
- Ref B: short eqprem from 1970 was 4-5%.
- Ref B: long eqprem from 1970 was 2%.
- How can anyone reconcile referees?

Agree to Disagree?

- You/they need to pick own period.
- I need to show what influence a choice has.
- I need a different kind of figure:
 - Not a log-plot of wealth
 - But a backward-looking inference plot.
 - Standing in 2013, looking back X years, ...

Numeric

Long-Horizon Equity Premium Spread (Now=12/2013):

```
2000-now \approx 0\% 1950-now \approx 5\% 1990-now \approx 1.5\% 1926-now \approx 4\% 1980-now \approx 2\% 1872-now \approx 3\% 1970-now \approx 2\% 1803-now \approx 2\%
```

Note: corporate AAA bonds are not much different from T-Bonds.

Choices

► The world has been changing. Weight more recent returns more?

2%

Use all the data you can get?

2%

But why the Ibbotson 1926- sample?

Historical Equity Premium Inference

- Principal Data Change:
 - Not lower stock returns nowadays,
 - but higher long-term bond yields nowadays.
- Oft-quoted 6-8% are arithmetic returns from 1926 to 1970 vis-a-vis Treasury bills?!
- If based on historical performance, the exp. equity premium relative to LT bonds should be 2-3% or less.
 - This estimate is consistent with equity premium 5% above short-term bills.

Me: < 1-2% above long T-bond. 3-4% above T-bill. High?

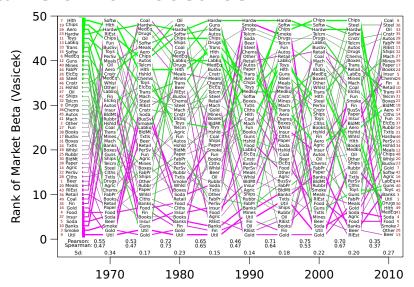
Non-Historical Inference

It used to be that the implied cost of capital (ICCs) was lower than the historical cost of capital.

Non-Historical Inference

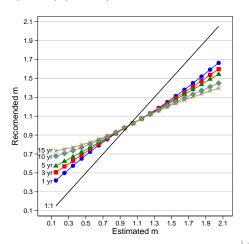
No longer. Li, Ng, and Swaminathan, JFE2013 extended: Implied Cost of Capital, Based on Analyst Estimates, Oct 2014:

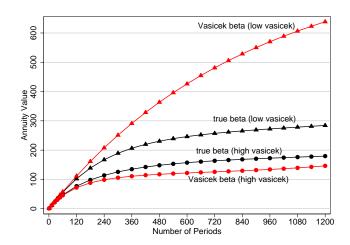
- Relative to Bonds: 6.5%
- Relative to Bills: 9.7%


I cannot reconcile them. Choose:

- $ho \approx 3\%$ (historical)
- or \approx 6% (ICC).
- ▶ I choose < 3%.
- If you choose 6%, you need to worry more about market-betas more than I.

CF Rest of the Paper


- Betas drift (mean-revert) slowly but steadily.
- Equity betas! Asset betas are more stable, because debt is more stable.


Ranks of 49 Industries

Appropriate Shrinkage

- Betas require second shrinkage for time-horizon.
 - ► Roughly, over 10-15y: $\beta \approx \lambda \times \hat{\beta}^{\text{VCK}} + (1-\lambda) \times 1$ and $\lambda \approx (1+35)/(m+35)$.

Appropriate Shrinkage

For 20-30 year (factory vs safe) PV of cash flow, do not use eqp=4% diff:

$$1\% + 4\% \times 2 \qquad 1\% + 4\% \times 0 \qquad \Delta = 9\%$$
 but eqp=1%:

$$4\% + 1\% \times 1.3$$
 $4\% + 1\% \times 0.7$ $\Delta = 1\%$

 Comparing two common projects, ignoring standard factor-exp risk is measurement error.

PS: Models have failed empirically

- The beta-shrinkage argument is right even if the models are right.
- CAPM and FFM Models have no empirical evidence to suggest usefulness.
- Models even fail to predict 1-month ahead. They are not better predicting 10 years ahead.

PS: Models have failed empirically

- The beta-shrinkage argument is right even if the models are right.
- CAPM and FFM Models have no empirical evidence to suggest usefulness.
- Models even fail to predict 1-month ahead. They are not better predicting 10 years ahead.

Specific CC Prescription

- We know the beta-predicted premia (or value-exposure premia) over long horizon
 - couldn't have mattered (with proper shrinkage).
 - didn't matter empirically (models fail)
- So what does matter? What should we prescribe?
- No better model and we will teach CAPM/FFM forever.

Better Model

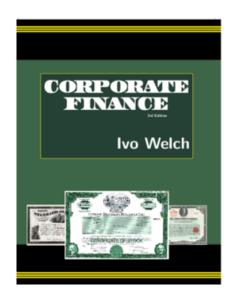
- We know that payoff timing matters, so differential maturity payoffs have different CCs.
- We know that taxes matters, so differential debt-financed payoffs have different CC.
 - (Our paper discusses leverage evidence.)
- Use Asset-class Based CC

Better Model

- We know that payoff timing matters, so differential maturity payoffs have different CCs.
- We know that taxes matters, so differential debt-financed payoffs have different CC.
 - (Our paper discusses leverage evidence.)
- Use Asset-class Based CC

ABC

- Make your life easy: assign $\beta = 1$ to all equity expected rates of return and use CAPM ;-).
- Use equivalent-horizon risk-free rate.
- Predict your leverage. Don't forget about tax-shelter and prob-distress of debt.


akin to imperfect-market CC prescription.

- If you want to teach this, which textbook?
 - A: None Yet.
- Which One First?
 - OK, my own—but not yet. Will continue to cover CAPM.
 - Always Free I am not serving myself here.
 - Outside U.S.: order one copy. You have my permission for your copy shop to make free copies.
 - Inside U.S.: \$60 (to cover color print costs in low quantity).

- If you want to teach this, which textbook?
 - A: None Yet.
- Which One First?
 - OK, my own—but not yet. Will continue to cover CAPM.
 - Always Free I am not serving myself here.
 - Outside U.S.: order one copy. You have my permission for your copy shop to make free copies.
 - Inside U.S.: \$60 (to cover color print costs in low quantity).

- If you want to teach this, which textbook?
 - A: None Yet.
- Which One First?
 - OK, my own—but not yet. Will continue to cover CAPM.
 - Always Free I am not serving myself here.
 - Outside U.S.: order one copy. You have my permission for your copy shop to make free copies.
 - Inside U.S.: \$60 (to cover color print costs in low quantity).

- If you want to teach this, which textbook?
 - A: None Yet.
- Which One First?
 - OK, my own—but not yet. Will continue to cover CAPM.
 - Always Free I am not serving myself here.
 - Outside U.S.: order one copy. You have my permission for your copy shop to make free copies.
 - Inside U.S.: \$60 (to cover color print costs in low quantity).

35/35