### IC: Model Stockholm PhD Minicourse 2023

Ivo Welch

May 2023

# A Little Formality

We need three "spaces" ("sets"):

- 1. An Underlying True Value, V
  - think this is what you will get if you pick correctly
  - revealed only at end of game (after action)
    - (PS: payoff itself could be noisy = signal)
- 2. A Private Signal (Opinion), S
  - we can allow occasional public signals, too
- 3. A Publicly Observable Action, A
  - "pick action inferred closest to true value"

# True Value ("State")

- Assume the true value is bounded
  - what would an unbounded true value / payoff even mean?
- If agents are homogeneous, can make payoff the state
- Private signal will be drawn based on true value

# (Private) Signal

- Just stated: must depend on true value
- Must be (reasonably) finite
  - must not have (non-zero-prob) signal perfectly informative about the underlying true value state (conditional?)
  - we could argue about what an epsilon probability of a perfect signal means, as agent/time goes to infinity
    - masochistic algebra fun, but really a distraction.

- signal could also be occasional, not given, asymmetric, endogenous, costly, etc.
  - signal type could be known or guessed by later agents.
  - many, many variations possible

#### Action

- The important endogenous choice, to be optimized by independent self-interested rational agents.
  - Everyone is selfish.
  - Everyone has same action choices (observable)
  - Bayesian Nash, but irrelevant.
    - Agents' payoffs do not depend on others' behavior.
    - There are no strategic player considerations.

#### We need some tie-break rule if indifferent:

- Follow Own (easy)
- Follow Predecessor (easy)
- Follow Waffle (shrink towards middle)
- Follow Random (earliest papers, masochistic)

#### **Queue Position**

- Easiest: exogenous ordering in queue.
  - uses only one subscript!! ;-)
  - subscripts are expensive!
  - (endogenous delay will be interesting)

#### Definition

An agent is in an IC if her optimal action choice is independent of her information.

- all agents can be in a cascade forever,
- or just some for a while
  - (e.g., if the underlying value is drifting).

**Primary Result** 

#### Under above assumptions:

#### An IC will occur with probability 100%

and it very often occurs very rapidly, too.
 in card draw, prob(HH) or prob(LL).

### Example: Welch 1992:

True value V is distributed uniform from 0 to 1.
 Signal is symmetric H or L:

$$p(H|V) = 1 - p(L|V) = V.$$

• if 
$$V = 0.25$$
,  $p(H)=1/4$ ,  $p(L)=3/4$ .

- 3. Action is adopt (A) or reject (R).
  - payoff( A | V>0.5 ) > payoff( R | V>0.5 )
  - payoff( A | V<0.5 ) < payoff( R | V<0.5 )</p>

- 4. Original tie-break rule: flip 50-50 coin
  - here make it easier: just follow own signal.
  - ▶ in paper, algebra a little more "impressive" (for referee).

# **Conjugate Prior**

- Canonical Bayesian example. Easy to work with!
- Bayes' Rule (love the guy!):

$$E(V|hH's, IL's) = \frac{h+1}{(h+l)+2}$$

• 
$$H : E(V|H) = 2/3$$

• 
$$L : E(V|L) = 1/3$$

- $\blacktriangleright HH : E(V|HH) = 3/4$
- HL : E(V|HL) = E(V|LH) = 1/2
- $\blacktriangleright LL : E(V|LL) = 1/4$

PS: Can integrate over prior uniform distribution

$$E(h H's \mid n \text{ draws}) = \frac{1}{n+1}$$

- as likely to get (30 H's; 0 L's) as (10 H's; 20 L's)
- used in paper for monopoly pricing and signaling, too.

#### What Choices?

use '[AR]' for action, '[LH]' for signal

• 
$$H: E(V|H) = 2/3 \Rightarrow A.$$

- $AL : E(V|AL) = 1/2 \Rightarrow (Q: AR \text{ or } AA?)$
- $\blacktriangleright AH : E(V|AH) = \implies$
- $\blacktriangleright AAL : E(V|AAL) = \implies$
- ►  $AA?????L : E(V|A^t,L) = \Rightarrow$

works same way in reverse with RH, etc.

# IC Result: Prob of (Right or Wrong) IC

- ► Keep information state as sum of previous As minus sum of Rs. When  $|#A #R| \ge 2$ , an IC ensues.
- Probability of getting two consecutive HHs or LLs

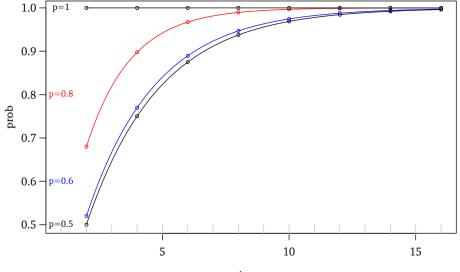
next one will be in IC

$$2 : p^{2} + (1-p)^{2} = 1 - 2p(1-p)$$
  
$$4 : p^{2} + (1-p)^{2} + 2p(1-p) \cdot (p^{2} + (1-p)^{2})$$
  
$$6 : [1 + 2p(1-p) + (2p(1-p))^{2}][p^{2} + (1-p)^{2}]$$

$$(t-2)/2 : \left[\sum_{i=0}^{t} (2p(1-p))^{t}\right] [p^{2} + (1-p)^{2}]$$
$$(T-2)/2 : \left[\frac{1 - (2p(1-p))^{T+1}}{1 - (2p(1-p))}\right] [p^{2} + (1-p)^{2}]$$

(formula/figure works for even *t* only)

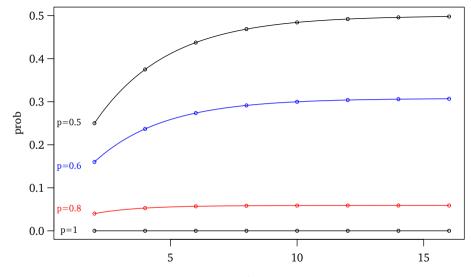
# **Quick Program Check**


```
N <- 1000000; T <- 6; p <- 0.51
```

```
M <- matrix( rbinom(N*T, 1, p) , ncol=T )
ss <- seq(2, T, 2)
isoppeven <- function(v) all( v[ss] != v[ss-1] )</pre>
```

```
isnocascade <- apply( M, 1, FUN=isoppeven )</pre>
```

```
cat("see some sample draws:\n")
print(head( cbind(M, isnocascade) ))
```


```
cat("probability not in a cascade:\n")
print(mean(isnocascade))
```



Agent

#### IC Result: Prob of Incorrect IC

- "Remove the  $p^2$ " in the T=2
- Will asymptote to finite number < 1/2</p>



Agent

## Ex: Bikhchandani, Hirshleifer, Welch 1992

#### Less fin-econ / more general econ than W 1992!

- reason why ICs are so well known today
- and what great coauthors are for!

# BHW: Changes from W

- 1. True value is not uniform but discrete (G or B in ex).
- 2. Signal is monotonically informative (H or L in ex).
- 3. Still same tie-break rule: randomize.
- 4. Added fashion leaders (more info), fragility (to public information), and depth.
- 5. Added then removed pseudocascades.

## Similar Probability Algebra

1. Up Cascade (Dn is the same)

$$\frac{1 - (p - p^2)^{T/2}}{2}$$

2. No cascade

$$p-p^2$$

#### 3. Correct cascade

$$\frac{p(p+1)[1-(p-p^2)^{T/2}]}{2(1-p+p^2)}$$

4. Incorrect cascade

$$\frac{(p-2)(p-1)[1-(p-p^2)^{T/2}]}{2(1-p+p^2)}$$

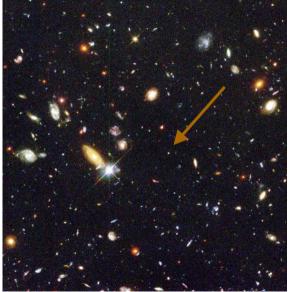
### **BHTW Bullet Points**

- Conformity
- Idiosyncrasy / Path Dependence
- Information externality
- ► Fragility

# Example: Banerjee 1992

- Much harder to explain.
  - Clearly independent work.
  - I did not know his, he did not know mine.
    - time before Internet (and undated)
    - zero inspiration or ancestry
    - citation to B came after R&R when we became aware

- 1. State space continuous, e.g., [0...1]
- 2. Action space continuous, e.g., [0...1]
- 3. Payoff
  - positive if action is perfectly correct
  - zero if action is epsilon off
- 4. Signal
  - signal either perfectly informative or uninformative
  - agent may know whether signal is uninformative,
  - but if he knows it is a signal, agent still does not know whether signal is useful or useless


#### Result

- decision tree puzzle exercises
- at some point, agents without a signal then copy predecessor(s)
- because even agents with signal are not sure whether their signal was a real signal or a fake signal, so eventually they (usually) follow predecessors, too.

# **Rough Intuition**

- Painful to sort out.
  - If I see choices  $\{2/3, 1/\pi\}$  before me, and I have signal  $e^{-1}$ , I choose  $e^{-1}$  instead of  $1/\pi$ .
  - ▶ If I see choices {2/3, 2/3, 2/3}, and I have signal *e*<sup>-1</sup>, I may choose 2/3.
  - If I see choices  $\{2/3, 1/\pi, 1/\pi\}$ , and I have precisely 2/3, I know I have a signal, I switch to correct IC.
    - #2:  $1/\pi$  was probably random draw.
    - #3: was probably uninformed, just copied #2
    - me: only way to get 2/3 was exact same info
  - also cases where many agents get correct signal, but they all appeared after a<sup>t</sup>, so they all ended up following wrong signal

## There exists a world...



# Banerjee

- Did have endogenous choice of non-use of private information = IC.
- Not general or (easily) generalizable
- Sort of abandoned, except in citations
- IMHO (Abhijit may disagree)
  - rarely read, often cited;
  - ... as having been like BHW.