IC: Actions Stockholm PhD Minicourse 2023

Ivo Welch

May 2023

Do ICs occur with infinitely many relevant actions?

Action Discreteness

- ▶ As $C \rightarrow \infty$, ICs disappear
- Intuitively action discreteness is at the heart of ICs
 - Obvious and easy with two action choices
- Infinitely fine action choices destroy responsiveness (Ali), "invertibility"
 - In the extreme: continuous relevant choices

Key Question

- Quantitative, not qualitative
- Can ICs then still matter economically? Or are they "just" a two-action curiosity?

Economic Meaning of Action Discreteness

- No one buys 3.1415 apples
- Even if you buy 245g of Herring and your predecessor bought 240g of Herring, this difference probably would not even register.
- In real life, basic joining or not joining is often easiest to observe and remember.
 - If ICs just matter for two actions, we better be *very* cautious about interpreting economic meaning
- How much do ICs matter quantatively?

How To Model?

- Want model with more vs. less choice granularity
 - ideally also in the very long-run.
 - ergo, not ideal with just two underlying value states
 - in this case, only two extremes are asymptotically optimal.
 - by asymptotic, I mean infinitely many signals.
- Want relevant action choices for granularity
 - not choices of 0.001, 0.002, 0.50, 0.998, 0.999 ?

Used Baseline: Welch 1992 model

- Uniform distribution of possible values
 - "Diffuse Bayesian prior"
 - Asymptotically, not just V=0 vs. V=1, but continuous V
- ► Binary signals, *H*, *L*, with probability p=V.
 - makes tracking decisions a lot easier!
- Easy non-abstract inference rule with signals:

$$EV(h,S) = (h+1)/(S+2)$$

Nothing IC for a while. Observe previous signals.

Relevant Available Choices

- ▶ 2: 1/3, 2/3
- ▶ 3: 1/4, 2/4, 3/4
- S: (i+1)/(S+1) for $i \in [0, ..., S-1]$
- matches possible inferences nicely.
- more *relevant* actions = least cascade-friendly.

Agent Goal

Pick choice c closest to true value p.

Agent Goal

Pick choice c closest to true value p.

Question: Does it matter whether objective is

•
$$MAE = |c({s}) - p|$$
, or
• $MSE = (c({s}) - p)^2$?

Agent Goal

Pick choice c closest to true value p.

Question: Does it matter whether objective is

•
$$MAE = |c({s}) - p|$$
, or
• $MSE = (c({s}) - p)^2$?

early? eventually (asymptotically)?

(Non-Linear) Algebra Sucks. Optimal C v:

$$\overline{\underline{v}}^{\star}(EV,C) \equiv \begin{cases} 1/(C+1) & \text{if } EV < 1.5/(C+1) \\ 2/(C+1) & \text{if } 1.5/(C+1) < EV < 2.5/(C+1) \\ \vdots & \vdots \\ C/(C+1) & \text{if } (C-0.5 \cdot C)/(C+1) < EV \end{cases}$$

$$= \frac{1}{C+1} + \left(\frac{1}{C-1}\right) \cdot \left\{\sum_{i=1}^{C-1} H\left(EV - \frac{2 \cdot i + 1}{2 \cdot C + 2}\right)\right\}$$

where f_i is binomial pdf and EV = f(...).

Tie-Breaking Rule

Tie-Breaking Rule

- **FP**: Follow Predecessor
- ► FO: Follow Own
- deterministic vs random.
 - deterministic makes tracking problem a lot easier.
 - with binary signals, agent will be either in an IC or her action will be *fully* invertible under MAE!
- > PS: in vstar function, I left tie-breaks open.

Rest is "Easy"

Given S observed signals of which h are H (no aspect of ICs yet), and C choices embedded in $\overline{\nu}^*$

$$\mathsf{MAE}_{T}(C,S) \equiv \int_{p=0}^{1} p \cdot \left(\sum_{h=0}^{S} f_{i}(S,i,p) \cdot \left| \underline{\underline{v}}^{\star}(EV(h,S),C) - p \right| \right) dp .$$

Again, formula is not for IC, but for observation of *h* H's in *S* signals.

Sequential Observable

Now we distinguish between

- SigObs
- ActObs (ICs possible)

which means that we can begin to consider ICs.

Q: Which TBR is most IC-friendly? unfriendly?

Note: Agent #5 will be responsive iff the 4th agent's inferred value is not 0.50. The choices are spaced narrowly enough that the first agent will have a perfect choice given her signal inference. This is not (necessarily) true for subsequent agents.

The choices are spaced narrowly enough that the second agent will have a perfect choice given her signal inference.

The choices are spaced narrowly enough that the third agent will have a perfect choice given her signal inference.

Maximum (Boring IC) Theorem

- Under FP, IC is guaranteed to start by $2 \cdot C$ agents.
- ▶ 4 Choices {1/5, 2/5, 3/5, 4/5}.
- ► HHHLHHH
 - 1. 2/3 (action 0.6, not 0.4);
 - **2**. 3/4 (0.8, not 0.6);
 - 3. 4/5 (0.8, not 0.6);
 - 4. 4/6 (0.6, not 0.8);
 - 5. 5/7 (0.8, not 0.6);
 - 6. 6/8 (0.8, not 0.6);
 - 7. 7/9 (0.8, not 0.6)
- Agent #8: L: 7/10. H: 8/10. either way, 0.8. IC.

Theoremizor (not Thagomizer)

- compared to action distance now of 1/5
- due to inference distances of 1/10 between L/H

No Max Theorem For FO

- Under FO, the infinitely repeating HL|LH sequences always return to inference 0.5.
 - cannot guarantee IC onset *ever* (also at 0.375, etc.)
 - nevertheless, ICs happen fast, but not guaranteed within N

Minimum (Boring IC) Theorem

- Cascade typically do not occur within C agents with best-spaced C (relevant) action choices
 - action \approx signal
 - excellent analogy to think of more choices as signals
 - thus, importance of actions declines with square-root

IC / MAE As Function of *C* and *N*

- No easy algebra on non-linear discont. functions.
- Do you care?
 - economic models are for basic insights.
 - IC model is sketch, not realistic. when not (designed to be) realistic, and the goal is exploring basic quantitative aspect, do we really need closed-forms and proofs?
 - Philosophy: is showing basic effect the point?
 - Philosophy: is proving absence of opposite statics important?
 - aesthetic problem, not economic problem
 - yeah, bugs me a little, too!

Two Choices (FO) [Expected Mistake]

Three Choices (FO)

Five Choices (FO)

Eleven Choices (FO, Thabit)

Conclusion

- ► ICs are less important, but not unimportant
- Two actions give highest IC relevance.
- A small action space is meaningful but ICs are not critically sensitive.

Conclusion

- ► ICs are less important, but not unimportant
- Two actions give highest IC relevance.
- A small action space is meaningful but ICs are not critically sensitive.

Anything Wrong?

What Benchmark?

- ICs are about information blocking.
 - IC effect: more choices induce later onset due to better invertibility / more responsiveness
- But more choices also make choices closer to truth available.
 - even if all agents had perfect information
 - has really nothing to do with IC invertibility and onset delay effect

"Fair" Benchmark

What is the IC-specific dampener / reduction?

- IC invertibility and onset delay effect
- Should we benchmark ActObs against SigObs?!
 - SigObs gains better proximity to truth asymptotically
 - ActObs gains both some more proximity to truth and later onset (more invertibility)
 - In relative terms, more action choices could even benefit SigObs more than ActObs

Two Choices (FO)

Three Choices (FO)

Five Choices (FO)

Eleven Choices (FO)

47 Choices (FO)

95 Choices (FO)

Relative and Absolute Errors

Number of Choices

Perspective: What Was Interesting?

▶ What did *I* learn from model?

Perspective: What Was Interesting?

What did I learn from model?

- More actions matter in the same sense that more information matters:
 - with many signals already, getting more signals becomes ever less important.
 - with many action choices already, getting more action choices becomes ever less important.

- We knew: infinite choices means perfect invertibility
- The importance of ICs is reasonably robust to the number of available actions:
 - In absolute terms (to true best choice), choice availability improvements mix in with invertibility improvements.
 - In relative terms to SigObs, ActObs onset (invertibility) is not even declining after two choices.

Modeling Advice for PhD Students

- Model end result often looks goal-oriented directed, effortless, trivial(?), beautiful(?)
- Often ain't the case.
 - I did not understand needed model ingredients
 - e.g., better uniform than discrete (= 2 weeks). Thabits? stupid?
 - I did not know or understand what paper concluded
 - obvious once explained, not before that's a good thing!
 - I sometimes ask audiences *before* I tell them the answers to make it clear that it ain't so obvious and effortless, after all.
- Theoremizing is often easier than economizing.
 - Just need first example! Think in numerics first when possible.