IC: Underlying Value / Payoff Stockholm PhD Minicourse 2023

Ivo Welch

May 2023

Basic IC Value Assumption

- Value (Payoff?) stays the same
 - independent of time (delay?)
 - independent of queue position (endog ordering?)
 - independent of earlier choices (price movements?)
 - independent of (later) choices (congestion? coordination?)
 - independent of agent (homogeneous preferences)
 - (uncorrelated with signal; see later.)
- \blacktriangleright \Rightarrow everyone has to make the same decision
 - Excludes heterogeneity, externalities, etc.

Value Change Effects on Agents

- 1. Payoff can become different
- 2. Invertibility can become different
- most interesting aspect in our IC context is how different ingredients can change invertibility

Delay and Queue Position

Some Important Papers:

Zhang (1997), Chamley-Gale (EMTCA 1994)

- function of reaction speed and period length
- some delay, then sudden herding on A or R
- see Chamley's book
 - best book introduction (ever)
- Lee (JET 1993)
 - immediate (simpler)

In general, if you had a choice as an agent, would you want to go first or later?

In general, if you had a choice as an agent, would you want to go first or later?

- delay and queue position are closely related
- we need some cost to delay (or benefit to being early), or else no one will ever go.

Penguins and Orcas

Are ICs More **Likely** To Set On If All Agents Have More or Less Information?

Are ICs More **Accurate** If All Agents Have More or Less Information?

Lee: What if everyone knows everyone's precision?

- Assume adopt/reject is visible.
 - A-vs-B choice?
 - opportunity to act is visible.
- Who will go first?
- What will happen next after this first actor?

CG: What would happen if everyone's precision is not public (but privately known)?

- Relies heavily on equilibrium inference
- High-accuracy agents have less to lose going earlier
- Agent sees no one has acted by time t. Act?
 - e.g., if I know (only) I have highest possible precision, may as well act immediately t=0 in eqbm. [boundary condition]
 - e.g., if I know I have 2nd highest possible precision, maybe wait to see if someone else with higher goes first.
 - no action? no one with top accuracy info. Me next.

- Equilibrium condition:
 - indifferent between waiting for next-best-informed agent to go before me and acting now.
 - cost of acting earlier: less-informed leads to bad choice
 - cost of acting later: delay value loss
 - [difference or differential equation]
- What will happen next after first guy?

Value Drifts: Temporary Cascades?

- value changes over time
 - Extremes: zero redraw. 100% redraw.
 - ▶ in between, for a while, you still have ICs
 - then it drifts back into relevant space where the value is different enough again to make a reasonable decision
 - then invertibility is reestablished.

Q: Typically, will it take a long time to drift back into "decision" region?

- what's the speed and frequency of action changes vs. those of underlying value changes?
 - Hirshleifer-Welch (2002): inertia
- See also Moscarini-Ottaviani-Smith (1998), Huang (2022).

Earlier Action (Price) Dependence

Basic Insight

- Price moves, set by sellers
- if I bought at \$10, you should not follow buying at \$20
- competitive sellers will "usually" set price to destroy ICs
 - ok, assumes risk-neutrality
 - ok, monopolistic sellers may not (W 1992)
 - ok, informed vs. uninformed sellers can matter (W 1992)
- but if P is always set such, actions return to invertible
 - ICs often naively misapplied to financial markets

Seminal Paper

- Avery-Zemsky (AER 1998)
 - ► Tour de force, but difficult read.
 - Key Idea: We need multi-dimensional uncertainty in order to scramble invertibility.
 - Example: number of sellers may also be unknown.
 - or equivalent, like unknown trader prefs
 - Two dimensions: get ICs back
 - Three dimensions: get wrong ICs back
 - Empirical estimates in Cipriani-Guarino (2014)

Payoff Externalities

could call ICs a form of information externality

or insufficient externality (relative to ?)?

Basic Insight

- Positive payoff externalities reinforce ICs (and vice-versa)
 - my adopting makes your adopting more valuable
 - conformity preferences could be positive externalities
 - VHS? (anyone know what this was?) Myspace? EVs?
 - reputation effects could be positive externalities

- Negative payoff externalities push against / balance ICs (and vice-versa)
 - my adopting makes your adopting less valuable
 - congestion (waiting), Veeraragharavan and Debo (2011)
 - depletion
 - Ester+ (2014)
 - see also Chamley (2004b)

Future?

- Rankings and ICs Theory
- Behavioral Interaction: Envy?
- Internet and Field Experiments: Tracking of Links and Behavior; Language-Based Data
- [Anderson-Holt: why irrational behavior? Measure inference?]